Open issues

A Song of D-branes and Fluxes

Wieland Staessens (JdC) based on 1807.00620, 1807.00888 (1503.01015, 1503.02965 [hep-th])

with G. Shiu

Instituto de Física Teórica UAM/CSIC Madrid

European Research Council

SPLE Advanced Grant

(日)、(型)、(E)、(E)、(E)、(O)(()

StringPheno 2018,

Warsaw, 04 July 2018

Inflation in Type IIA

Guth, Linde, Mukhanov, Steinhardt, Starobinsky,...

- Inflationary epoch = cure for horizon problem and flatness problem
- nearly scale invariant, nearly Gaussian CMB data:

$$n_s - 1 = 2\eta - 6\epsilon, r = 16\epsilon$$

in agreement with slow-roll single scalar field w/ potential V

$$\epsilon \equiv \frac{M_{Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \qquad |\eta| \equiv \left|M_{Pl}^2 \frac{V''}{V}\right| \ll 1 \qquad \text{during inflation}$$

Challenge for String Theory: Inflaton candidate + potential?

Inflation in Type IIA

Guth, Linde, Mukhanov, Steinhardt, Starobinsky,...

- Inflationary epoch = cure for horizon problem and flatness problem
- nearly scale invariant, nearly Gaussian CMB data:

$$n_s - 1 = 2\eta - 6\epsilon, r = 16\epsilon$$

in agreement with slow-roll single scalar field w/ potential V

$$\epsilon \equiv \frac{M_{Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \qquad |\eta| \equiv \left|M_{Pl}^2 \frac{V''}{V}\right| \ll 1 \qquad \text{during inflation}$$

• Challenge for String Theory: Inflaton candidate + potential?

(日)、(型)、(E)、(E)、(E)、(O)()

Inflation in Type IIA

(日)、(型)、(E)、(E)、(E)、(O)()

Inflation in Type IIA

reviews: Baumann (2009); Baumann-McAllister (2009,2014); Westphal (2014); ... Inflation in String Theory tied with Moduli Stabilization ۰ D3/7-brane position moduli Burgess et al ('01), Dvali et al ('01), Dasgupta et al ('02) Hebecker et al ('12), Ibáñez et al ('14-'15-'16), ... Type IIB Kähler Moduli (e.g. Fibre) Cicoli-Burgess-Quevedo ('08) (Cicoli, Shukla) Kähler Axions (aligned natural, N-flation, monodromy, kinetic alignment) Kim-Nilles-Peloso ('04), Dimopoulos et al ('05), Silverstein-Westphal-(McAllister) ('08) Marchesano-Shiu-Uranga ('14) Type IIA Blumenhagen-Plauschinn ('14) Hebecker-Krause-Witkowski ('14) Inflaton Source Potential $o^{-3,3-p}$ NS-flux & RR-flux Volume ρ $s^{-2,-3,-4}$ Dilaton s NS-flux & RR-flux & O6/D6

 B_2 -axion RR-flux $b^{1,2,3}$ C_3 -axion

Inflation in Type IIA

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Inflation in Type IIA

(日)、(型)、(E)、(E)、(E)、(O)()

Stringy Axions & Effective Decay Constant

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

 Type II String Theory compactifications Blumenhagen-Körs-Lüst-Stieberger ('06); Ibañez-Uranga ('12)
 → Closed string axions aⁱ from dim. red. of p-forms C_(p) on M_{1,3} × X₆/ΩR (C_(p) ∈ RR-forms + NS 2-form in Type II)

$$a^i\equiv (2\pi)^{-1}\int_{\Sigma^i} C_{(p)}, \qquad p- ext{cycle } \Sigma^i\subset \mathcal{X}_6, \qquad i\in\{1,\ldots, egin{array}{c} h_{11}\ h_{21}+1 \end{array}\}$$

Type II String Theory compactifications w/ D-branes

 ³ 4d EFT with mixing axions + fermions (anomaly cancellation) (Dudas' talk)
 ¹ Aldazabel-Franco-Ibáñez-Rábadan-Uranga ('01)

$$S_{axion}^{\text{eff}} = \int \left[\frac{1}{2} \sum_{i,j=1}^{N} \frac{\mathcal{G}_{ij}}{\swarrow} (\mathrm{d}a^{i} - k^{i}A) \wedge \star_{4} (\mathrm{d}a^{j} - k^{j}A) - \frac{1}{8\pi^{2}} \left(\sum_{i=1}^{N} r_{i}a^{i} \right) \operatorname{Tr}(G \wedge G) + \mathcal{L}_{gauge} + \mathcal{L}_{\psi} \right]$$

metric mixing $U(1)$ mixing $k^{i} \neq 0$ anomalous coupling

• Diagonalisation of kinetic and potential terms \Rightarrow effective decay constant $f_{\rm eff}$ with moduli dependence

Stringy Axions & Effective Decay Constant

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

• Type II String Theory compactifications Blumenhagen-Körs-Lüst-Stieberger ('06); Ibañez-Uranga ('12) \rightarrow Closed string axions a^i from dim. red. of *p*-forms $C_{(p)}$ on $\mathcal{M}_{1,3} \times \mathcal{X}_6/\Omega \mathcal{R}$ ($C_{(p)} \in \text{RR-forms} + \text{NS 2-form in Type II}$)

$$a^i\equiv (2\pi)^{-1}\int_{\Sigma^i}\mathcal{C}_{(p)}, \qquad p- ext{cycle }\Sigma^i\subset\mathcal{X}_6, \qquad i\in\{1,\ldots, egin{array}{c} h_{11}\ h_{21}+1 \end{array}\}$$

- Type II String Theory compactifications w/ D-branes $\Rightarrow 4d \text{ EFT}$ with mixing axions + fermions (anomaly cancellation) (Dudas' talk) Aldazabel-Franco-Ibáñez-Rábadan-Uranga ('01) $S_{axion}^{\text{eff}} = \int \left[\frac{1}{2} \sum_{i,j=1}^{N} \mathcal{G}_{ij}(\mathrm{d}a^{i} - k^{i}A) \wedge \star_{4}(\mathrm{d}a^{j} - k^{j}A) - \frac{1}{8\pi^{2}} \left(\sum_{i=1}^{N} r_{i}a^{i} \right) \mathrm{Tr}(G \wedge G) + \mathcal{L}_{gauge} + \mathcal{L}_{\psi} \right]$ metric mixing U(1) mixing $k^{i} \neq 0$ anomalous coupling
 - Diagonalisation of kinetic and potential terms \Rightarrow effective decay constant $f_{\rm eff}$ with moduli dependence

 $10^{14}{
m GeV} \lesssim f_{
m eff} \lesssim 10^{19}{
m GeV}$

Stringy Axions & Effective Decay Constant

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

• Type II String Theory compactifications Blumenhagen-Körs-Lüst-Stieberger ('06); Ibañez-Uranga ('12) \rightarrow Closed string axions a^i from dim. red. of *p*-forms $C_{(p)}$ on $\mathcal{M}_{1,3} \times \mathcal{X}_6/\Omega \mathcal{R}$ ($C_{(p)} \in \text{RR-forms} + \text{NS 2-form in Type II}$)

$$a^i\equiv (2\pi)^{-1}\int_{\Sigma^i}\mathcal{C}_{(p)}, \qquad p- ext{cycle }\Sigma^i\subset\mathcal{X}_6, \qquad i\in\{1,\ldots, egin{array}{c} h_{11}\ h_{21}+1 \end{array}\}$$

- Type II String Theory compactifications w/ D-branes $\Rightarrow 4d \text{ EFT}$ with mixing axions + fermions (anomaly cancellation) (Dudas' talk) Aldazabel-Franco-Ibáñez-Rábadan-Uranga ('01) $S_{axion}^{\text{eff}} = \int \left[\frac{1}{2} \sum_{i,j=1}^{N} \mathcal{G}_{ij}(\mathrm{d}a^{i} - k^{i}A) \wedge \star_{4}(\mathrm{d}a^{j} - k^{j}A) - \frac{1}{8\pi^{2}} \left(\sum_{i=1}^{N} r_{i}a^{i} \right) \mathrm{Tr}(G \wedge G) + \mathcal{L}_{gauge} + \mathcal{L}_{\psi} \right]$ metric mixing U(1) mixing $k^{i} \neq 0$ anomalous coupling
 - Diagonalisation of kinetic and potential terms \Rightarrow effective decay constant $f_{\rm eff}$ with moduli dependence

 $10^{14}{
m GeV} \lesssim f_{
m eff} \lesssim 10^{19}{
m GeV}$

From UV (Fermions) to IR (Infladrons)

Shiu-W.S. (1807.00620, 1807.00888)

- Integrating out $U(1) \rightsquigarrow 4\psi$ interactions (N-JL): $\frac{q_L q_R}{2M_{er}^2} \left[(\overline{\psi}\psi)^2 + (\overline{\psi}i\gamma^5\psi)^2 \right]$
- θ -vacuum of SU(N) YM breaks U(1) explicitly
 - ★ Instanton-induced effective fermion interactions 't Hooft ('76) Callan-Dashen-Gross ('78)

$$\mathcal{L}_{\mathrm{'t\ Hooft}} = C\ e^{-rac{8\pi^2}{g^2}+i heta} \det(\overline{\psi}_L\psi_R) + h.c.$$

at strong coupling for $SU(N) \rightsquigarrow$ effective fermion mass

- * Fermion Confinement \Rightarrow Fermion condensate $(\langle \overline{\psi}_L \psi_R \rangle_\theta \neq 0)$ Casher (1979) 4ψ interactions \rightsquigarrow fermion mass $M \sim -\frac{1}{M_{ef}^2} \langle \overline{\psi}_L \psi_R \rangle_\theta$
- $E < \Lambda_s$: bound state $\overline{\psi}\psi \rightarrow \text{EFT}$ for composite scalar $\Phi(x) = \sigma(x)e^{i\frac{\eta}{T}}$ Weinberg ('79)
- mass spectrum in vacuum

$$\begin{array}{ccccc} f_{\xi} \ll f & f_{\xi} \sim f & f \ll f_{\xi} \\ \downarrow & \downarrow & \downarrow \\ m_{\eta} < m_{\sigma} \ll m_{\xi} & m_{\xi}, m_{\eta} < m_{\sigma} & m_{\xi} \ll m_{\eta} < m_{\sigma} \end{array}$$

From UV (Fermions) to IR (Infladrons)

Shiu-W.S. (1807.00620, 1807.00888)

- Integrating out $U(1) \rightsquigarrow 4\psi$ interactions (N-JL): $\frac{q_L q_R}{2M_{er}^2} \left[(\overline{\psi}\psi)^2 + (\overline{\psi}i\gamma^5\psi)^2 \right]$
- θ -vacuum of SU(N) YM breaks U(1) explicitly
 - ★ Instanton-induced effective fermion interactions 't Hooft ('76) Callan-Dashen-Gross ('78)

$$\mathcal{L}_{\text{'t Hooft}} = C \, e^{-\frac{8\pi^2}{g^2} + i\theta} \det(\overline{\psi}_L \psi_R) + h.c.$$

at strong coupling for $SU(N) \rightsquigarrow$ effective fermion mass

- ★ Fermion Confinement ⇒ Fermion condensate $(\langle \overline{\psi}_L \psi_R \rangle_{\theta} \neq 0)$ Casher (1979) 4 ψ interactions \rightsquigarrow fermion mass $M \sim -\frac{1}{M_{sr}^2} \langle \overline{\psi}_L \psi_R \rangle_{\theta}$
- $E < \Lambda_s$: bound state $\overline{\psi}\psi \rightarrow \text{EFT}$ for composite scalar $\Phi(x) = \sigma(x)e^{i\frac{\eta}{T}}$ Weinberg (79)
- mass spectrum in vacuum

$$\begin{array}{cccc} f_{\xi} \ll f & f_{\xi} \sim f & f \ll f_{\xi} \\ \downarrow & \downarrow & \downarrow \\ m_{\eta} < m_{\sigma} \ll m_{\xi} & m_{\xi}, m_{\eta} < m_{\sigma} & m_{\xi} \ll m_{\eta} < m_{\sigma} \end{array}$$

From UV (Fermions) to IR (Infladrons)

Shiu-W.S. (1807.00620, 1807.00888)

- Integrating out $U(1) \rightsquigarrow 4\psi$ interactions (N-JL): $\frac{q_L q_R}{2M_{er}^2} \left[(\overline{\psi}\psi)^2 + (\overline{\psi}i\gamma^5\psi)^2 \right]$
- θ -vacuum of SU(N) YM breaks U(1) explicitly
 - ★ Instanton-induced effective fermion interactions 't Hooft ('76) Callan-Dashen-Gross ('78)

$$\mathcal{L}_{\text{'t Hooft}} = C \ e^{-\frac{8\pi^2}{g^2} + i\theta} \det(\overline{\psi}_L \psi_R) + h.c.$$

at strong coupling for $SU(N) \rightsquigarrow$ effective fermion mass

- ★ Fermion Confinement ⇒ Fermion condensate $(\langle \overline{\psi}_L \psi_R \rangle_\theta \neq 0)$ Casher (1979) 4 ψ interactions \rightsquigarrow fermion mass $M \sim -\frac{1}{M^2} \langle \overline{\psi}_L \psi_R \rangle_\theta$
- $E < \Lambda_s$: bound state $\overline{\psi}\psi \rightarrow \text{EFT}$ for composite scalar $\Phi(x) = \sigma(x)e^{i\frac{\eta}{f}}$ Weinberg ('79) $V = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^2 + \Lambda_s^2 \left(\kappa e^{i\frac{\xi}{f_{\xi}} + i\theta} \det(\Phi) + \kappa e^{-i\frac{\xi}{f_{\xi}} - i\theta} \det(\Phi^{\dagger}) + M\Phi + M\Phi^{\dagger}\right)$

Set by the U(1) symmetries in the model with spurions $e^{i\theta}$ and M

mass spectrum in vacuum

From UV (Fermions) to IR (Infladrons)

Shiu-W.S. (1807.00620, 1807.00888)

- Integrating out $U(1) \rightsquigarrow 4\psi$ interactions (N-JL): $\frac{q_L q_R}{2M_{et}^2} \left[(\overline{\psi}\psi)^2 + (\overline{\psi}i\gamma^5\psi)^2 \right]$
- θ -vacuum of SU(N) YM breaks U(1) explicitly
 - ★ Instanton-induced effective fermion interactions 't Hooft ('76) Callan-Dashen-Gross ('78)

$$\mathcal{L}_{\text{'t Hooft}} = C \ e^{-\frac{8\pi^2}{g^2} + i\theta} \det(\overline{\psi}_L \psi_R) + h.c.$$

at strong coupling for $SU(N) \rightsquigarrow$ effective fermion mass

- ★ Fermion Confinement ⇒ Fermion condensate $(\langle \overline{\psi}_L \psi_R \rangle_\theta \neq 0)$ Casher (1979) 4 ψ interactions \rightsquigarrow fermion mass $M \sim -\frac{1}{M^2} \langle \overline{\psi}_L \psi_R \rangle_\theta$
- $E < \Lambda_s$: bound state $\overline{\psi}\psi \rightarrow \text{EFT}$ for composite scalar $\Phi(x) = \sigma(x)e^{i\frac{\eta}{f}}$ Weinberg ('79) $V = -\mu^2\sigma^2 + \frac{\lambda}{2}\sigma^4 + 2\kappa\Lambda_s^2\sigma\cos\left(\frac{\eta}{f} + \frac{\xi}{f_\xi} + \theta\right) + 2\Lambda_s^2M\sigma\cos\frac{\eta}{f}$

with vacuum $\langle \sigma
angle = f \sim \Lambda_s$, $\langle \eta
angle = 0 = \langle \xi
angle$

mass spectrum in vacuum

From UV (Fermions) to IR (Infladrons)

Shiu-W.S. (1807.00620, 1807.00888)

- Integrating out $U(1) \rightsquigarrow 4\psi$ interactions (N-JL): $\frac{q_I q_R}{2M_{er}^2} \left[(\overline{\psi}\psi)^2 + (\overline{\psi}i\gamma^5\psi)^2 \right]$
- θ -vacuum of SU(N) YM breaks U(1) explicitly
 - ★ Instanton-induced effective fermion interactions 't Hooft ('76) Callan-Dashen-Gross ('78)

$$\mathcal{L}_{\text{'t Hooft}} = C \ e^{-\frac{8\pi^2}{g^2} + i\theta} \det(\overline{\psi}_L \psi_R) + h.c.$$

at strong coupling for $SU(N) \rightsquigarrow$ effective fermion mass

- ★ Fermion Confinement ⇒ Fermion condensate $(\langle \overline{\psi}_L \psi_R \rangle_\theta \neq 0)$ Casher (1979) 4 ψ interactions \rightsquigarrow fermion mass $M \sim -\frac{1}{M^2} \langle \overline{\psi}_L \psi_R \rangle_\theta$
- $E < \Lambda_s$: bound state $\overline{\psi}\psi \rightarrow \text{EFT}$ for composite scalar $\Phi(x) = \sigma(x)e^{i\frac{\eta}{f}}$ Weinberg ('79) $V = -\mu^2\sigma^2 + \frac{\lambda}{2}\sigma^4 + 2\kappa\Lambda_s^2\sigma\cos\left(\frac{\eta}{f} + \frac{\xi}{f_\xi} + \theta\right) + 2\Lambda_s^2M\sigma\cos\frac{\eta}{f}$

with vacuum $\langle \sigma
angle = f \sim \Lambda_s$, $\langle \eta
angle = 0 = \langle \xi
angle$

• mass spectrum in vacuum massive $(\sigma, \eta) = INFLADRONS$

Introduction

Phases of Axion Inflation

Shiu-W.S. (1807.00888)

see also Inagaki-Odintsov-Sakamoto ('15-'17)

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Natural-like Inflation

Shiu-W.S. (1807.00620, 1807.00888)

 $\xi = \text{inflaton candidate}$ with $f \ll f_{\xi}$ and $m_{\xi} \ll m_{\eta} < m_{\sigma}$

Viable inflationary model requires control over corrections:

- perturbative QFT corrections constrained by perturbative U(1) symmetry Weinberg ('79), Coleman-Weinberg ('73), Hill-Salopek ('92)
- (2) back-reaction of heavy infladrons on inflationary trajectory see e.g. Stewart ('94), Lazarides-Panagiotakopoulos ('95), Lyth-Stewart ('96), Dong-Horn-Silverstein-Westphal('11)
- (3) Pert. & Non-pert. gravitational corrections

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Natural-like Inflation

Shiu-W.S. (1807.00620, 1807.00888)

 $\xi =$ inflaton candidate with $f \ll f_{\xi}$ and $m_{\xi} \ll m_{\eta} < m_{\sigma}$

Viable inflationary model requires control over corrections:

- perturbative QFT corrections constrained by perturbative U(1) symmetry Weinberg ('79), Coleman-Weinberg ('73), Hill-Salopek ('92)
- (2) back-reaction of heavy infladrons on inflationary trajectory see e.g. Stewart ('94), Lazarides-Panagiotakopoulos ('95), Lyth-Stewart ('96), Dong-Horn-Silverstein-Westphal('11)
- (3) Pert. & Non-pert. gravitational corrections

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Natural-like Inflation

Shiu-W.S. (1807.00620, 1807.00888)

 $\xi =$ inflaton candidate with $f \ll f_{\xi}$ and $m_{\xi} \ll m_{\eta} < m_{\sigma}$

Viable inflationary model requires control over corrections:

- (1) perturbative QFT corrections constrained by perturbative U(1) symmetry Weinberg ('79), Coleman-Weinberg ('73), Hill-Salopek ('92)
- (2) back-reaction of heavy infladrons on inflationary trajectory see e.g. Stewart ('94), Lazarides-Panagiotakopoulos ('95), Lyth-Stewart ('96), Dong-Horn-Silverstein-Westphal('11)
- (3) Pert. & Non-pert. gravitational corrections

Open issues

Natural-like Inflation

Shiu-W.S. (1807.00620, 1807.00888)

 $\xi = \text{inflaton candidate}$ with $f \ll f_{\xi}$ and $m_{\xi} \ll m_{\eta} < m_{\sigma}$

Viable inflationary model requires control over corrections:

(1) perturbative QFT corrections constrained by perturbative U(1) symmetry Weinberg ('79), Coleman-Weinberg ('73), Hill-Salopek ('92) $V^{\text{no br}}$

(2) back-reaction of heavy infladrons on inflationary trajectory see e.g. Stewart ('94), Lazarides-Panagiotakopoulos ('95), Lyth-Stewart ('96), Dong-Horn-Silverstein-Westphal('11)

(3) Pert. & Non-pert. gravitational corrections

э

・ロト ・得ト ・ヨト ・ヨト

Open issues

Natural-like Inflation

Shiu-W.S. (1807.00620, 1807.00888)

 $\xi = \text{inflaton candidate}$ with $f \ll f_{\xi}$ and $m_{\xi} \ll m_{\eta} < m_{\sigma}$

Viable inflationary model requires control over corrections:

(1) perturbative QFT corrections constrained by perturbative U(1) symmetry Weinberg ('79), Coleman-Weinberg ('73), Hill-Salopek ('92) $V^{\text{no br}}$

(2) back-reaction of heavy infladrons on inflationary trajectory see e.g. Stewart ('94), Lazarides-Panagiotakopoulos ('95), Lyth-Stewart ('96), Dong-Horn-Silverstein-Westphal('11)

(3) Pert. & Non-pert. gravitational corrections

э

・ロト ・得ト ・ヨト ・ヨト

イロト 不得 トイヨト イヨト

Э

Back-reacting infladrons

(日)、(型)、(E)、(E)、(E)、(O)()

Constraints from Gravity

Shiu-W.S. (1807.00620)

• U(1) symmetry constrains perturbative corrections involving gravitons \rightarrow one-loop corrections in terms of $\frac{V_{\text{per}}}{M_{Pl}^4}, \frac{V'_{\text{per}}}{M_{Pl}^3}, \frac{V''_{\text{per}}}{M_{Pl}^2}$ Smolin (1980)

• Axionic wormholes with metric
$$ds^2 = dr^2 + a^2(r)d\Omega_3^2$$
 and $a(0) > M_{st}^{-1}$
 $S_{AW} = \int \sqrt{g_E} \left[-\frac{M_{Pl}^2}{2} R_E - \underbrace{\frac{f_{\xi}^2}{2} g_E^{mn} \partial_m \xi \partial_n \xi}_{\text{Gidings-Strominger ('88)}} + \underbrace{\frac{1}{2} g_E^{mn} \partial_m \sigma \partial_n \sigma - \frac{\sigma^2}{2} g_E^{mn} \partial_m \eta \partial_n \eta + V_{\text{per}}(\sigma)}_{\text{Abbott-Wise ('89)}} \right]$
axion charge $w_{\xi} \gg 1$ axion charge $w_{\eta} \gg 1$
 \downarrow
 $S_{GS} \sim w_{\xi} \frac{M_{Pl}}{f_{\xi}} \gg 1$ $S_{AW} \sim w_{\eta}^{4/3} \lambda^{1/3} \gg 1$

Gravit. Instanton corrections highly suppressed Montero-Uranga-Valenzuela ('15) Hebecker-Mangat-Theissen-Witkowski ('16)

~ ~ ~ ~

Constraints from Gravity

Shiu-W.S. (1807.00620)

• U(1) symmetry constrains perturbative corrections involving gravitons \rightarrow one-loop corrections in terms of $\frac{V_{\text{per}}}{M_{e_u}^4}, \frac{V_{\text{per}}'}{M_{e_u}^4}, \frac{V_{\text{per}}'}{M_{e_u}^2}$ Smolin (1980)

• Axionic wormholes with metric $ds^2 = dr^2 + a^2(r)d\Omega_3^2$ and $a(0) > M_{st}^{-1}$ $S_{AW} = \int \sqrt{g_E} \left[-\frac{M_{Pl}^2}{2} R_E - \frac{f_{\xi}^2}{2} g_E^{mn} \partial_m \xi \partial_n \xi}{\frac{1}{3} g_E^{mn} \partial_m \sigma \partial_n \sigma - \frac{\sigma^2}{2} g_E^{mn} \partial_m \eta \partial_n \eta + V_{per}(\sigma)}{\frac{1}{3} Giddings-Strominger}('88)} \right]$ axion charge $w_{\xi} \gg 1$ axion charge $w_{\eta} \gg 1$ \downarrow $S_{GS} \sim w_{\xi} \frac{M_{Pl}}{f_E} \gg 1$ $S_{AW} \sim w_{\eta}^{4/3} \lambda^{1/3} \gg 1$

Gravit. Instanton corrections highly suppressed Montero-Uranga-Valenzuela ('15) Hebecker-Mangat-Theissen-Witkowski ('16)

Constraints from Gravity

Shiu-W.S. (1807.00620)

• U(1) symmetry constrains perturbative corrections involving gravitons \rightarrow one-loop corrections in terms of $\frac{V_{\text{per}}}{M_{eq}^4}, \frac{V_{\text{per}}'}{M_{eq}^4}, \frac{V_{\mu}''}{M_{eq}^2}$ Smolin (1980)

• Axionic wormholes with metric $ds^2 = dr^2 + a^2(r)d\Omega_3^2$ and $a(0) > M_{st}^{-1}$ $S_{AW} = \int \sqrt{g_E} \left[-\frac{M_{Pl}^2}{2} R_E - \frac{f_{\xi}^2}{2} g_E^{mn} \partial_m \xi \partial_n \xi}{\frac{1}{3} g_E^{mn} \partial_m \sigma \partial_n \sigma - \frac{\sigma^2}{2} g_E^{mn} \partial_m \eta \partial_n \eta + V_{per}(\sigma)}{\frac{1}{3} Giddings-Strominger}('88)} \right]$ axion charge $w_{\xi} \gg 1$ axion charge $w_{\eta} \gg 1$ \downarrow $S_{GS} \sim w_{\xi} \frac{M_{Pl}}{f_{\epsilon}} \gg 1$ $S_{AW} \sim w_{\eta}^{4/3} \lambda^{1/3} \gg 1$

Gravit. Instanton corrections highly suppressed Montero-Uranga-Valenzuela ('15) Hebecker-Mangat-Theissen-Witkowski ('16)

Conclusions and Outlook

Conclusions

- Rich UV theory with mixing axions, gauge dof and fermions
 → rich IR theories in terms of axions and infladrons
- \neq phase of gauge theories $\rightsquigarrow \exists \neq$ inflationary models (natural, monodromy, Starobinsky)
- QFT corrections under control, back-reaction gives flattened potential, Gravitational corrections under control

Open issues

Full String Theory construction including moduli stabilisation

Conlon (2006), Cicoli-Dutta-Maharana (2014), Blumenhagen-(Font-Fuchs-)Herschmann-Plauschinn(-Sekiguchi-Wolf) (2014/15),...

- Verification of WGC and other swampland conjectures Vafa ('05), Arkani-Hamed-Motl-Nicolis-Vafa ('06), Ooguri-Vafa ('06), Cornell, Hamburg, Harvard, Heidelberg, Madison, Madrid, Münich ...
- Multiple fermionic generations ↔ more dynamics to generate infladron masses

Conclusions and Outlook

Conclusions

- Rich UV theory with mixing axions, gauge dof and fermions ~ rich IR theories in terms of axions and infladrons
- ≠ phase of gauge theories → ∃ ≠ inflationary models (natural, monodromy, Starobinsky)
- QFT corrections under control, back-reaction gives flattened potential, Gravitational corrections under control

Open issues

Full String Theory construction including moduli stabilisation

Conlon (2006), Cicoli-Dutta-Maharana (2014), Blumenhagen-(Font-Fuchs-)Herschmann-Plauschinn(-Sekiguchi-Wolf) (2014/15),...

- Verification of WGC and other swampland conjectures Vafa ('05), Arkani-Hamed-Motl-Nicolis-Vafa ('06), Ooguri-Vafa ('06), Cornell, Hamburg, Harvard, Heidelberg, Madison, Madrid, Münich ...
- Multiple fermionic generations \rightsquigarrow more dynamics to generate infladron masses

Open issues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dziękuję ci bardzo

Thank you very much

Open issues

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Effective Action & Effective Decay Constant

 different from N-enhancement mechanisms: f_{eff} ~ N^pf with p ≥ 1/2, Dimopoulos-Kachru-McGreevy-Wacker (2005), Choi-Kim-Yung (2014), Bachlechner-Long-McAllister (2014/15), Junghans (2015)

(日)、(型)、(E)、(E)、(E)、(O)()

Chiral Symmetry Breaking & Mass Generation

Global U(1) symmetry J^μ_{U(1)} = q₊ ψ γ^μψ + q₋ ψ γ^μγ⁵ψ is broken by gauge instantons & Yukawa-coupling (4ψ-coupling) in θ-vacuum

$$\partial_{\mu}J^{\mu}_{U(1)} = -q_{-}\frac{1}{16\pi^{2}}\mathrm{Tr}(\varepsilon^{\mu\nu\rho\sigma}G_{\mu\nu}G_{\rho\sigma}) + 2q_{-}M\overline{\psi}i\gamma^{5}\psi$$

• Shift symmetry $\xi \rightarrow \xi + \varepsilon_{\xi}$ is broken by gauge instantons

• $U(1)_{\text{chiral}} \times U(1)_{\xi}$ as spurion symmetries with (θ, M) as spurion fields:

$$\begin{array}{ll} \Phi \to e^{2i\alpha q_{-}} \Phi, \\ U(1)_{\rm chiral}: & \theta \to \theta + 2\alpha q_{-}, \\ M \to e^{-2i\alpha q_{-}} M \end{array} \qquad \qquad U(1)_{\xi}: \begin{array}{ll} \xi \to \xi + \varepsilon, \\ \theta \to \theta + \varepsilon. \end{array}$$

2 separate mass-generating terms:

$$V = V_1(\xi - i \ln \det(\Phi) - \theta) + V_2(M\Phi + M^{\dagger}\Phi^{\dagger})$$

Natural-like Inflation

 $\xi =$ inflaton candidate with $f \ll f_{\xi}$ and $m_{\xi} \ll m_{\eta} < m_{\sigma}$

Viable inflationary model requires control over perturbative QM corrections:

Weinberg ('79)

- Non-renormalizable corrections have to be compatible with U(1) symmetries:
 - * derivative terms: $M_{UV}^{-4} |\partial \Phi^{\dagger} \partial \Phi|^2$, $M_{UV}^{-2} |\Phi|^2 |\partial \Phi|^2 \Rightarrow additionally suppressed by powers of <math>\frac{f}{f_c} \sim 10^{-3}$
- Loop-corrections for perturbative Φ-interactions
 - ★ 1-loop effective action $V^{1-loop} \sim (-\mu^2 + 3\lambda|\Phi|^2)^2 \left\{ ln \left(\frac{-\mu^2 + 3\lambda|\Phi|^2}{\Lambda_r^2} \right) \frac{3}{2} \right\}^{Coleman-Weinberg ('73)}$ \rightarrow proper resummation using Callan-Symanzik equation for V_{eff} maintains

* Induced non-minimal coupling to gravity $\int \sqrt{-g} \varpi |\Phi|^2 R$ Hill-Salopek ('92) $g_{\mu\nu} \longrightarrow g_{\mu\nu} \qquad \sigma$ $\phi^{\dagger} \rightarrow g_{\mu\nu} \qquad \sigma$

Solving RGE for $\varpi \rightarrow$ IR-fixed point $\varpi = 0$ Voloshin-Dolgov ('82)

Open issues

Back-reacting infladrons

• Infladron-backreaction: hierarchy $m_{\xi} \ll m_{\eta} < m_{\sigma}$ has to prevail along Buchmüller et al ('15),... inflationary trajectory $\rightsquigarrow OK$ when $\frac{f}{f_c} \sim 10^{-3}$

Back-reacting infladrons

Jac.

イロト 不得 トイヨト イヨト

Э

Back-reacting infladrons

(日)、(型)、(E)、(E)、(E)、(O)()

Consistency & 4-Fermion Couplings

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

• U(1) gauge invariance requires presence of chiral fermions ψ

Integrating out massive U(1) boson
 → 1 axion ξ + 1 non-Abelian gauge group + chiral fermions

$$S = \int \frac{1}{2} \mathrm{d}\xi \wedge \star_{4} \mathrm{d}\xi - \frac{1}{8\pi^{2}} \frac{\xi}{f_{\xi}} \mathrm{Tr}(G \wedge G) - \frac{\mathcal{C}}{f_{2}^{2}} \underbrace{\mathcal{J}_{\psi} \wedge \star_{4} \mathcal{J}_{\psi}}_{4-\text{fermion}} + \mathcal{L}_{\psi}$$

• Work out infrared vacuum for 1 generation ψ

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Consistency & 4-Fermion Couplings

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

• U(1) gauge invariance requires presence of chiral fermions ψ

"reversed" GS mechanism Aldazabel-Franco-Ibáñez-Rábadan-Uranga ('01)

Integrating out massive U(1) boson
 → 1 axion ξ + 1 non-Abelian gauge group + chiral fermions

$$S = \int \frac{1}{2} \mathrm{d}\xi \wedge \star_4 \mathrm{d}\xi - \frac{1}{8\pi^2} \frac{\xi}{f_{\xi}} \mathsf{Tr}(G \wedge G) - \frac{\mathcal{C}}{f_2^2} \underbrace{\mathcal{J}_{\psi} \wedge \star_4 \mathcal{J}_{\psi}}_{4-fermion} + \mathcal{L}_{\psi}$$

• Work out infrared vacuum for 1 generation ψ

Consistency & 4-Fermion Couplings

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

- U(1) gauge invariance requires presence of chiral fermions ψ
- Integrating out massive U(1) boson $\rightsquigarrow 1 \operatorname{axion} \xi + 1$ non-Abelian gauge group + chiral fermions

$$S = \int \frac{1}{2} \mathrm{d}\xi \wedge \star_{4} \mathrm{d}\xi - \frac{1}{8\pi^{2}} \frac{\xi}{f_{\xi}} \mathrm{Tr}(G \wedge G) - \frac{\mathcal{C}}{f_{2}^{2}} \underbrace{\mathcal{J}_{\psi} \wedge \star_{4} \mathcal{J}_{\psi}}_{4-\text{fermion}} + \mathcal{L}_{\psi}$$

• Work out infrared vacuum for 1 generation ψ

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Nambu-Jona-Lasinio ('61)

Consistency & 4-Fermion Couplings

w/ Shiu-Ye 1503.01015, 1503.02965 [hep-th]

- U(1) gauge invariance requires presence of chiral fermions ψ
- Integrating out massive U(1) boson
 → 1 axion ξ + 1 non-Abelian gauge group + chiral fermions

$$S = \int \frac{1}{2} \mathrm{d}\xi \wedge \star_4 \mathrm{d}\xi - \frac{1}{8\pi^2} \frac{\xi}{f_{\xi}} \mathsf{Tr}(G \wedge G) - \frac{\mathcal{C}}{f_2^2} \underbrace{\mathcal{J}_{\psi} \wedge \star_4 \mathcal{J}_{\psi}}_{4-\text{fermion}} + \mathcal{L}_{\psi}$$

• Work out infrared vacuum for 1 generation ψ

Nambu-Jona-Lasinio ('61)

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

N-JL type couplings: $\frac{q_L q_R}{2M_{\star}^2} \left[(\overline{\psi}\psi)^2 + (\overline{\psi}i\gamma^5\psi)^2 \right]$