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Motivation - ML in Science and Society
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Fig. 1. Left: three tumor patches and right: three challenging normal patches.
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Motivation - ML in String Theory

» Possible applications of ML in string theory

Find string models in the landscape

Find generic / common features of string-derived model and

extract string theory predictions from the landscape [Patrick’s talk]
[Gary’s talk]

Find patterns in mathematics of string theory [Jim’s talk] [Sven’s talk]

Use machine learning / Al to perform computation intensive
WOrk [FR'17]

» Can we use machine learning to study the landscape?

[He’17; Krefl, Seong’17; FR’17; Carifio, Halverson, Krioukov, Nelson’17;
Wang, Zhang "18; Hashimoto, Sugishita, Tanaka, Tomiya " 18]
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Motivation - ML in String Theory

4D string theories highly non-unique

« Different choices lead to 10°"Y to 107°® or more string vacua
(Go has 10177 states)
[Douglas "03; Douglas, Sen "04; Halverson, Long, Sung 17; Taylor, Wang "15-"17]

* Number huge but seems finite
|Reid "87; Douglas, Taylor "07; Buchbinder, Constantin, Lukas "14;

Groot Nibbelink, Loukas, FR, Vaudrevange "15; Di Cerbo, Svaldi "16]
* Most of these vacua do not correspond to our universe

* Problem: We know the phenomenological properties a string
theory that describes our universe has to have, but we lack a
vacuum selection mechanism



Motivation - ML in String Theory

When choosing a string background (geometry, flux):

» Need to ensure mathematical/physical consistency
* TJadpole and anomaly cancellation

e Solution is actual vacuum (D- and F-flat)

» Need to ensure physically desirable features
* Gauge algebra of the SM: SU(3) x SU(2) x U(1),
* Three tamilies of quarks and leptons, one Higgs pair
* Absence of exotics, realistic Yukawas

* Realistic cosmological constant
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Motivation - ML in String Theory

» Mathematical constraints: Often collection of non-
linear, coupled Diophantic equations

» Physical constraints: Further constrains Diophantic
solutions in non-obvious way

» Upshot:

* [For a given configuration we can check its viability easily,
out we have no idea how to find a good configuration in the
first place

» To traverse vacua: Use Reinforcement Learning, a
semi-supervised approach to Machine Learning



Outline

» Reinforcement Learning (RL)
e |ntroduction to RL
 |ntroduction to NNs + Tree searches

* |Implementation

» Example applications
* Finding vacua in Type [IA/B intersecting brane models

* Finding vacua in Heterotic Eg X Eq

» Conclusion



Reinforcement learning




Reinforcement Learning - ldea

» Basic textbooks/literature [Barton, Sutton '98 “17]

» Based on behavioural psychology: train individual by
* Rewarding "good” behavior

* Punishing "bad” behavior

» Used e.g. in Go (Note: Go has 10177 states) [Silver et. al. 16 “17]
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Via this reinforcement, the agent learns a
policy that, given a state, selects an action
that maximises its “return” (accumulated
long-term reward)



Reinforcement Learning - Prediction Problem

» In order to maximize long-term return, we need to
poredict:

1. how beneficial is a given state

2. how high will the reward of future actions be

» In order to predict this, we use neural networks that
learn to make good predictions based on previous
experience



Neural Networks 101
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» Connections: Matrix Multiplication

» Nodes: Apply some activation function f
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Neural Networks 101

» Connection between layers : Linear transformations L;:
Matrix multiplication v, = A*v;, + b’

» Each layer applies a function (activation function) to its input to
compute its output. Common choices are

( ) RelLu Logistic Sigmoid Tanh

1 1t

i

» Typical NN: RM 5 RN
v fpoLy,o...0 fyo L



Neural Networks 101

» Look at simplest case: 1 layer, 1 node, logistic sigma
function zous = (1 + exp(azi, + b))~

* a: Steepness of step (step function for a — 00 )

* b : Position of step: (intersects y-axisaty =1/2forb=0)
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(B) Using NN to approximate functions
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(B) Using NN to approximate functions




(B) Using NN to approximate functions

» More nodes = more steps = approximate any function (with
one layer)[Cybenko '89; Hornik '91; Nielsen‘15]



Reinforcement Learning - Details

» Commonly used policies:

* Greedy: Choose the action that maximizes the
action value function: 7'(s) = argmax ¢(s, a)

* Draw next action from probability distribution
m'(s) = argmax[log(q(s, a)) + gumbel(q(s, a))]

e Perform tree search

» We use ChainerRL implementation of A3C [Mnih et al '16]
(Asynchronous advantage actor-critic) possibly
combined with tree search



Reinforcement Learning - A3C

» Asynchronous: Have n workers explore the environment
simultaneously and asynchronously

e Improves training stability (experience of workers
separated)

* Improves exploration
» Advantage: Use advantage to update policy

» Actor-critic: To maximize return need to know state or action
value and optimize policy (use neural network for estimate).

* Actor-critic
e “critic’: update action value

e “actor”: update policy based on action value estimate
(i.e. on the critic)



Reinforcement Learning - Tree search
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Reinforcement Learning - Tree search

current state
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Reuse part of the tree




Reinforcement Learning - Tree search

current state



Reinforcement Learning - A3C

Global instance

Policy Value

Network

Input

Worker 1 Worker 2 Worker n

Policy Value Policy Value Policy Value

Network Network Network

Input Input Input

o




Reinforcement Learning - Implementation

» Open Al Gym: Interface between agent (RL) and environment
(string landscape) [Brockman et al '16]

 We provide the environment
 We use ChainerRL’s implementation of A3C for the agent

Environment step Chainer RL
4+ action space make N 2duEliglele
+ | (A3C,DQN,...)
observation (state) env
space reset 4+ NN architecture
(FF, LSTM,...)
@ Chainer RL
» step: » make environment
* go 1o new state » specify RL method (A3C)
* return (new_state, reward, done, comment) , specify policy NN (FF.LSTM)

» reset:
e reset episode

* return stari_state



Type Il Intersecting branes
Orientifolds of toroidal orbifolds
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Heterotic Eg x Eg string theory
on orbifolds

Example applications




Type Il Orientifolds




[|A Orientifolds

» Why this setup?

e \Well studied [Blumenhagen,Gmeiner,Honecker,Lust,Weigand '04'05;
Douglas, Taylor '07, ...]

 Comparatively simple

 Number of (well-defined) solutions known to be finite:
[Douglas, Taylor '07]
+ Use symmetries to relate different vacua

+ Combine consistency conditions to rule out combinations

 BUT: Number of possibilities so large that not a single
“Interesting” solution could be found despite enormous
random scans (estimated to 1:109)

* [nteresting to study with big data / Al methods



Do branes

T? T2 T?

» Can (have to for three generations) tilt torus (2 different
complex structure choices compatible with orientifold)

» D6 brane: 4D Minkowski + a line on each torus
» Can stack multiple D6 branes on top of each other

» Brane Stacks<:>TupIe: (N, ni,MmM1,MN2, M2, N3, mg)



D6 Branes - Consistency Conditions

» Tadpole cancellation: Balance D6 / O6 charges:

#stacks N® nclL ng ng 3
—N%nimsmg | | 4

; —N*m{nsm3 | | 4
—NmTms ng 3

» K-Theory: Global consistency constraint:

2N*“mImsms 2 0

#stacks NGy g pa 9 0
1772 7% 1 mod =

Z1 —N%nTmsns 2 0

T —2N*n¢ nd mé 2 0



D6 Branes - Consistency Conditions

» SUSY: Va =1, ..., # stacks

a a a ’ a . a. . a a a. . a a_ . a a _
mi{msms — J mingns — knimsng — €ningms =0

a a a . a a a
NiNoNlg — ] N1MoMg —

» Pheno: SU(3) x SU(2)
» MasslessU(1)'s: T, €

kmingms — fmimong > 0

x U(1) + MSSM particles
ker({N*mk})

i =1,2,3 (three tori)

k ]
A

,...,#U brane stacks

r =

... dim(ker({ N*m}}))

= k — 3 (generically)



Typell RL - Model the environment

N
» State space: s, €S, |S|=NDNs (Nfg)

s¢ = [(N',n{,my,ny, m3,nz,ms), (N*,n%,...),...]

» Action space: Two approaches

e (Construct collection of winding number 6-tuples.
Actions can add/remove branes from the brane stacks or
exchange entire 6-tuples from pool of constructed stacks
A={N* - N®+1, add stack (N,nq,...),
remove stack (IN,nq,...)}

o Start with all winding numbers zero. Actions can add/
remove branes from the brane stacks or add +1 to any
winding number in any stack

A:{NCL%N&::L n?—)n?::l, mf’—)n?::l}




Typell RL - Model the environment

» Reward R: Need a notion of “how good a state is”

1. By how much does a set of stacks violate the tadpole?

2. |s a set of stacks fully consistent (Tadpole, K-Theory, SUSY)
(Note: the latter two are binary, hard to define distance)

3. How far is the state from the Standard Model
e Missing a group factor of SU(3) x SU(2) x U(1)?
e Too few Standard model particles (Q,u,d, L, H,,, Hq, €)?

e Extra exotics (particles charged under the Standard Model but not observed
so far)

Note: Only works if good states are “close by” in this sense...

» Need multi-task RL;

* Check properties consecutively/simultaneously and use different
reward hierarchies for different tasks

e Split up async workers and let them prioritise different goals



Preliminary results

» Parameters:

16 or 32 workers (1 CPU, 16-32 threads, 2.6GHz)
Training time of the order few hours to a day

Neural network for value and policy evaluation:

Feed-forward NN with 2 hidden Softmax layers with 200
nodes

Initial state: Empty stack
Maximal steps per episode: 10,000 - 250,000

10 evaluation runs every 100,000 steps



mean reward

Preliminary results -
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Number of different models satisfying constraints vs number of steps

# of different models satsfying constraints

Preliminary results -

-inding models Approach 1
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Heterotic Orbifolds




Heterotic Orbifolds

» Why this setup?

Consistent models constructed

[Blaszczyk, Buchmuller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles,
Raby, Ramos—Sanchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, ... "06-10]

Comparatively simple
Phenomenologically promising

Well-developed mathematics and computer codes to

perform CFT computations for spectrum, couplings, ...

[Dixon, Harvey, Vafa, Witten "86; Gross, Harvey, Martinec, Rohm "86]
[Nilles, Ramos-Sanchez, Vaudrevange, Wingerter "11]



Heterotic Orbifolds

» Start from constructed models

e Already identitied MSSM gauge group and spectrum

... but the vacua of the theory have to be found s.t.

4

4

4

+

D-term induced from an Fl parameter of an anomalous U(1) symmetry
IS canceled

No F-terms are induced in the process
extra vector-like exotics (order 40) decouple

extra gauge symmetries (U(1)s) get broken

All achieved by singlet VEVs

Encode VEV of singlets in bit string [5152; - -+ sn]

Assigns; = 0/ 1 if singlet i has no VEV / VEV



Heterotic RL - Consistency Conditions

» D-Terms:
/Q1,1 4g1,2--- din \ /|51’ \ /51\ r — # U(l)S

@21 G22--- Q2n |52]? &9

\C]rr:-,l %“,2:”- CI'Pn :/ \|Sn|2) \ﬁn/

n = 7+ singlets

» F-terms:
oW |
Fi = D5, Zadpd(s) =0

mq : polynomials in s; of degree d



Heterotic RL - Consistency Conditions

» Pheno:
e generate full rank mass matrix for exotics
* Kkeep one vector-like Higgs pair
* break additional U(1) gauge groups but not hyper charge
» Massive U(1)s:
,in Ylyig -+ Gl singlets ¢1,..., 1

42,47 42,i5 - -+ 42, have a VEV
ker , . , .1 =0

QT,il QT,’il c Q'r‘,ik



Heterotic RL - Model the environment

» State space: st € Siotal, |Stotal] = 277181

St — [817827"'7577,]

» Action space: Two approaches

e Start with all VEVs off (no F-terms, but D-terms, exotics,
U(1)s) and turn VEVs on

e Start with all VEVs on (no D-terms, exotics, U(1)s, but many
F-terms) and turn VEVs off



Heterotic RL - Model the environment

» Reward R: Need a notion of "how good a state Is”
1. How many F-terms does a VEV configuration generate?
2. How many U(1)s are left unbroken?

3. How many exotics are not decoupled?

4. Is a Higgs pair kept light?
5. Are all D-terms cancelled?

» Note:
* Approaches require multi-task RL



Preliminary results - Heterotic Model Approach 2
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» Reward structure;
e +100 for each F-term that is canceled
 +10k for keeping Higgs light while decoupling all other exotics

e end episode if exotics increase, D-term is not canceled, U(1)s become massless

» Best state: 0/6 D-terms, 0/8 U(1)’s, 0/36 exotics, 17/1,124



Preliminary results - Heterotic Model Approach 2

Number of different solutions vs number of steps
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 +100 for each F-term that is canceled
 +10k for keeping Higgs light while decoupling all other exotics

e end episode if exotics increase, D-term is not canceled, U(1)s become massless

» Best state: 0/6 D-terms, 0/8 U(1)’s, 0/36 exotics, 17/1,124



Conclusion

» RL well suited for search & explore in the string landscape
» Very versatile applications to string theory:

e String models in Type Il intersecting brane models on
toroidal orientifolds

e Vacuum configurations for Heterotic Eg x g string theory

Thank you for

your attention!



