Reinforcement learning in string theory

FABIAN RUEHLE (UNIVERSITY OF OXFORD)

String Pheno 2018 - Warsaw 02/07/2018

Based on:

[Brent Nelson, Jim Halverson, Fabian Ruehle]
[Jim Halverson, Hans Peter Nilles, Fabian Ruehle, Patrick Vaudrevange]

Motivation - ML in Science and Society

Fig. 1. Left: three tumor patches and right: three challenging normal patches

Fig. 2. Difficulty of pixel-accurate annotations for scattered tumor cells Ground truth annotation is overlaid with a lighter shade. Note that the tumor annotations include both tumor cells and normal cells e.g., white space representing adipose tissue (fat).

[Liu et al. `17]

Fig. 3. The three colorful blocks represent Inception (V3) towers up to the second-last layer (PreLogit), Single scale utilizes one tower with input images at 40X magnification; multi-scale utilizes multiple (e.g.,2) input magnifications that are input to separate towers and merged.

[Zooniverse `18; picture from Barden et al `08]

[Silver et al. `17]

- Possible applications of ML in string theory
 - Find string models in the landscape
 - Find generic / common features of string-derived model and extract string theory predictions from the landscape [Patrick's talk] [Gary's talk]
 - Find patterns in mathematics of string theory [Jim's talk] [Sven's talk]
 - Use machine learning / AI to perform computation intensive work [FR'17]
 - •
- Can we use machine learning to study the landscape? [He'17; Krefl, Seong'17; FR'17; Carifio, Halverson, Krioukov, Nelson'17; Wang, Zhang `18; Hashimoto, Sugishita, Tanaka, Tomiya `18]

- Possible applications of ML in string theory
 - Find string models in the landscape
 - Find generic / common features of string-derived model and extract string theory predictions from the landscape [Patrick's talk] [Gary's talk]
 - Find patterns in mathematics of string theory [Jim's talk] [Sven's talk]
 - Use machine learning / AI to perform computation intensive work [FR'17]
 - •
- Can we use machine learning to study the landscape? [He'17; Krefl, Seong'17; FR'17; Carifio, Halverson, Krioukov, Nelson'17; Wang, Zhang `18; Hashimoto, Sugishita, Tanaka, Tomiya `18]

4D string theories highly non-unique

- Different choices lead to 10^{500} to 10^{755} or more string vacua (Go has 10^{177} states) [Douglas `03; Douglas, Sen `04; Halverson, Long, Sung `17; Taylor, Wang `15-`17]
- Number huge but seems finite
 [Reid `87; Douglas, Taylor `07; Buchbinder, Constantin, Lukas `14;
 Groot Nibbelink, Loukas, FR, Vaudrevange `15; Di Cerbo, Svaldi `16]
- Most of these vacua do not correspond to our universe
- Problem: We know the phenomenological properties a string theory that describes our universe has to have, but we lack a vacuum selection mechanism

When choosing a string background (geometry, flux):

- Need to ensure mathematical/physical consistency
 - Tadpole and anomaly cancellation
 - Solution is actual vacuum (D- and F-flat)
- Need to ensure physically desirable features
 - Gauge algebra of the SM: $SU(3) \times SU(2) \times U(1)_Y$
 - Three families of quarks and leptons, one Higgs pair
 - Absence of exotics, realistic Yukawas
 - Realistic cosmological constant

When choosing a string background (geometry, flux):

- Need to ensure mathematical/physical consistency
 - Tadpole and anomaly cancellation
 - Solution is actual vacuum (D- and F-flat)
- Need to ensure physically desirable features
 - Gauge algebra of the SM: $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_Y$
 - Three families of quarks and leptons, one Higgs pair
 - Absence of exotics, realistic Yukawas
 - Realistic cosmological constant

When choosing a string background (geometry, flux):

- Need to ensure mathematical/physical consistency
 - Tadpole and anomaly cancellation
 - Solution is actual vacuum (D- and F-flat)
- Need to ensure physically desirable features
 - Gauge algebra of the SM: $SU(3) \times SU(2) \times U(1)_Y$
 - Three families of quarks and leptons, one Higgs pair
 - Absence of exotics, realistic Yukawas

- Mathematical constraints: Often collection of nonlinear, coupled Diophantic equations
- Physical constraints: Further constrains Diophantic solutions in non-obvious way
- Upshot:
 - For a given configuration we can check its viability easily, but we have no idea how to find a good configuration in the first place
- To traverse vacua: Use Reinforcement Learning, a semi-supervised approach to Machine Learning

Outline

- Reinforcement Learning (RL)
 - Introduction to RL
 - Introduction to NNs + Tree searches
 - Implementation
- Example applications
 - Finding vacua in Type IIA/B intersecting brane models
 - Finding vacua in Heterotic $E_8 \times E_8$
- Conclusion

Reinforcement learning

Reinforcement Learning - Idea

- ▶ Basic textbooks/literature [Barton, Sutton '98 '17]
- Based on behavioural psychology: train individual by
 - Rewarding "good" behavior
 - Punishing "bad" behavior
- ▶ Used e.g. in Go (Note: Go has 10¹⁷⁷ states) [Silver et. al. '16 '17]

 Want to explore the string landscape ("environment")

- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned

- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)

states (string configuration)

- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")

- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")
- They select these actions via some "policy"

- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")
- They select these actions via some "policy"
- Depending on the chosen action they receive a pos/neg "reward"

- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")
- They select these actions via some "policy"
- Depending on the chosen action they receive a pos/neg "reward"
- Via this reinforcement, the agent learns a policy that, given a state, selects an action that maximises its "return" (accumulated long-term reward)

Return

Reinforcement Learning - Prediction Problem

- In order to maximize long-term return, we need to predict:
 - 1. how beneficial is a given state
 - 2. how high will the reward of future actions be
- In order to predict this, we use neural networks that learn to make good predictions based on previous experience

- Connections: Matrix Multiplication
- ▶ Nodes: Apply some activation function f

- Connections: Matrix Multiplication
- ▶ Nodes: Apply some activation function f

- Connection between layers : Linear transformations L_i : Matrix multiplication $v_{\text{out}}^i = A^i v_{\text{in}}^i + b^i$
- Each layer applies a function (activation function) to its input to compute its output. Common choices are

extstyle ext

- Look at simplest case: 1 layer, 1 node, logistic sigma function $x_{\rm out} = (1 + \exp(ax_{\rm in} + b))^{-1}$
 - a: Steepness of step (step function for $a \to \infty$)
 - b: Position of step: (intersects y-axis at y = 1/2 for b = 0)

(B) Using NN to approximate functions

(B) Using NN to approximate functions

(B) Using NN to approximate functions

 More nodes ⇒ more steps ⇒ approximate any function (with one layer) [Cybenko '89; Hornik '91; Nielsen'15]

Reinforcement Learning - Details

- Commonly used policies:
 - Greedy: Choose the action that maximizes the action value function: $\pi'(s) = \operatorname{argmax} q(s, a)$
 - Draw next action from probability distribution $\pi'(s) = \operatorname{argmax}[\log(q(s, a)) + \operatorname{gumbel}(q(s, a))]$
 - Perform tree search
- We use ChainerRL implementation of A3C [Mnih et al '16]
 (Asynchronous advantage actor-critic) possibly combined with tree search

Reinforcement Learning - A3C

- Asynchronous: Have n workers explore the environment simultaneously and asynchronously
 - improves training stability (experience of workers separated)
 - improves exploration
- Advantage: Use advantage to update policy
- Actor-critic: To maximize return need to know state or action value and optimize policy (use neural network for estimate).
 - Actor-critic
 - "critic": update action value
 - "actor": update policy based on action value estimate (i.e. on the critic)

Reinforcement Learning - Tree search

Reinforcement Learning - Tree search

Reinforcement Learning - Tree search

Reinforcement Learning - Tree search

Reinforcement Learning - A3C

Reinforcement Learning - Implementation

- Open Al Gym: Interface between agent (RL) and environment (string landscape) [Brockman et al '16]
 - We provide the environment
 - We use ChainerRL's implementation of A3C for the agent

- step:
 - go to new state
 - return (new_state, reward, done, comment)
- reset:
 - reset episode
 - return start_state

- make environment
- specify RL method (A3C)
- specify policy NN (FF,LSTM)

Type II Intersecting branes
Orientifolds of toroidal orbifolds

Heterotic $E_8 \times E_8$ string theory on orbifolds

Example applications

Type II Orientifolds

IIA Orientifolds

- Why this setup?
 - Well studied [Blumenhagen, Gmeiner, Honecker, Lust, Weigand '04'05; Douglas, Taylor '07, ...]
 - Comparatively simple
 - Number of (well-defined) solutions known to be finite:

[Douglas, Taylor '07]

- Use symmetries to relate different vacua
- Combine consistency conditions to rule out combinations
- BUT: Number of possibilities so large that not a single "interesting" solution could be found despite enormous random scans (estimated to 1:109)
- Interesting to study with big data / AI methods

D6 branes

- Can (have to for three generations) tilt torus (2 different complex structure choices compatible with orientifold)
- D6 brane: 4D Minkowski + a line on each torus
- Can stack multiple D6 branes on top of each other
- ▶ Brane stacks \Leftrightarrow Tuple: $(N, n_1, m_1, n_2, m_2, n_3, m_3)$

D6 Branes - Consistency Conditions

Tadpole cancellation: Balance D6 / O6 charges:

$$\sum_{a=1}^{\text{\#stacks}} \begin{pmatrix} N^a n_1^a n_2^a n_3^a \\ -N^a n_1^a m_2^a m_3^a \\ -N^a m_1^a n_2^a m_3^a \\ -N^a m_1^a m_2^a n_3^a \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 4 \\ 8 \end{pmatrix}$$

K-Theory: Global consistency constraint:

$$\sum_{a=1}^{\text{\#stacks}} \begin{pmatrix} 2N^a m_1^a m_2^a m_3^a \\ -N^a m_1^a n_2^a n_3^a \\ -N^a n_1^a m_2^a n_3^a \\ -2N^a n_1^a n_2^a m_3^a \end{pmatrix} \mod \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

D6 Branes - Consistency Conditions

► SUSY: $\forall a = 1, ..., \#$ stacks $m_1^a m_2^a m_3^a - j m_1^a n_2^a n_3^a - k n_1^a m_2^a n_3^a - \ell n_1^a n_2^a m_3^a = 0$ $n_1^a n_2^a n_3^a - j n_1^a m_2^a m_3^a - k m_1^a n_2^a m_3^a - \ell m_1^a m_2^a n_3^a > 0$

- ▶ Pheno: $SU(3) \times SU(2) \times U(1)$ + MSSM particles
- Massless U(1)'s: $T_r \in \ker(\{N^k m_i^k\})$ i=1,2,3 (three tori) $k=1,\ldots,\# U$ brane stacks $r=1,\ldots,\dim(\ker(\{N^k m_i^k\}))$ =k-3 (generically)

Typell RL - Model the environment

- ▶ State space: $s_t \in S$, $|S| = N_{\text{max}}^{N_S} \binom{N_B}{N_S}$ $s_t = [(N^1, n_1^1, m_1^1, n_2^1, m_2^1, n_3^1, m_3^1), (N^2, n_1^2, \ldots), \ldots]$
- Action space: Two approaches
 - Construct collection of winding number 6-tuples. Actions can add/remove branes from the brane stacks or exchange entire 6-tuples from pool of constructed stacks $A = \{N^a \to N^a \pm 1, \text{ add stack } (N, n_1, \ldots), \text{ remove stack } (N, n_1, \ldots)\}$
 - Start with all winding numbers zero. Actions can add/remove branes from the brane stacks or add ± 1 to any winding number in any stack

$$A = \{ N^a \to N^a \pm 1, \ n_i^a \to n_i^a \pm 1, \ m_i^a \to n_i^a \pm 1 \}$$

Typell RL - Model the environment

- ▶ Reward R: Need a notion of "how good a state is"
 - 1. By how much does a set of stacks violate the tadpole?
 - 2. Is a set of stacks fully consistent (Tadpole, K-Theory, SUSY) (Note: the latter two are binary, hard to define distance)
 - 3. How far is the state from the Standard Model
 - Missing a group factor of $SU(3) \times SU(2) \times U(1)$?
 - Too few Standard model particles $(Q, u, d, L, H_u, H_d, e)$?
 - Extra exotics (particles charged under the Standard Model but not observed so far)

Note: Only works if good states are "close by" in this sense...

- Need multi-task RL:
 - Check properties consecutively/simultaneously and use different reward hierarchies for different tasks
 - Split up async workers and let them prioritise different goals

Preliminary results

Parameters:

- 16 or 32 workers (1 CPU, 16-32 threads, 2.6GHz)
- Training time of the order few hours to a day
- Neural network for value and policy evaluation: Feed-forward NN with 2 hidden Softmax layers with 200 nodes
- Initial state: Empty stack
- Maximal steps per episode: 10,000 250,000
- 10 evaluation runs every 100,000 steps

Preliminary results - Finding models Approach 1

Preliminary results - Finding models Approach 1

Number of different models satisfying constraints vs number of steps

- (0.99,0,val1_21-v0)
 SM GG
 TC
 TCK
 TCKS
 TCKS+SM
- 1.) Check consistency
- 2.) Check particle physics

(0.99,multi,val1_21-v0)

SM GG

TCKS

TCKS+SM

Number of different models satisfying constraints vs number of steps

steps

multitask:

- 16 workers consistency
- 16 workers particle physics

Heterotic Orbifolds

Heterotic Orbifolds

- Why this setup?
 - Consistent models constructed
 [Blaszczyk, Buchmuller, Groot Nibbelink, Hamaguchi, Kim, Kyae, Lebedev, Nilles, Raby, Ramos–Sanchez, Ratz, FR, Trapletti, Vaudrevange, Wingerter, ... `06-10]
 - Comparatively simple
 - Phenomenologically promising
 - Well-developed mathematics and computer codes to perform CFT computations for spectrum, couplings, ...

[Dixon, Harvey, Vafa, Witten `86; Gross, Harvey, Martinec, Rohm `86] [Nilles, Ramos-Sanchez, Vaudrevange, Wingerter `11]

Heterotic Orbifolds

- Start from constructed models
 - Already identified MSSM gauge group and spectrum
 - ... but the vacua of the theory have to be found s.t.
 - D-term induced from an FI parameter of an anomalous U(1) symmetry is canceled
 - ♦ No F-terms are induced in the process
 - extra vector-like exotics (order 40) decouple
 - ◆ extra gauge symmetries (U(1)s) get broken
 - All achieved by singlet VEVs
 - Encode VEV of singlets in bit string $[s_1, s_2, \dots, s_n]$
 - Assign $s_i = 0/1$ if singlet i has no VEV / VEV

Heterotic RL - Consistency Conditions

D-Terms:

$$\begin{pmatrix} q_{1,1} & q_{1,2} \dots & q_{1,n} \\ q_{2,1} & q_{2,2} \dots & q_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{r,1} & q_{r,2} \dots & q_{r,n} \end{pmatrix} \begin{pmatrix} |s_1|^2 \\ |s_2|^2 \\ \vdots \\ |s_n|^2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix} \qquad r = \# \text{ U}(1)\text{s}$$

$$n = \# \text{ singlets}$$

F-terms:

$$F_i = \frac{\partial W}{\partial s_i} = \sum a_d p_d(s) \stackrel{!}{=} 0$$

 m_d : polynomials in s_i of degree d

Heterotic RL - Consistency Conditions

Pheno:

- generate full rank mass matrix for exotics
- keep one vector-like Higgs pair
- break additional U(1) gauge groups but not hyper charge
- Massive U(1)s:

$$\ker \begin{pmatrix} q_{1,i_1} & q_{1,i_2} & \cdots & q_{1,i_k} \\ q_{2,i_1} & q_{2,i_2} & \cdots & q_{2,i_k} \\ \vdots & \vdots & \ddots & \vdots \\ q_{r,i_1} & q_{r,i_1} & \cdots & q_{r,i_k} \end{pmatrix} = 0$$
 singlets i_1, \dots, i_k have a VEV

Heterotic RL - Model the environment

- State space: $s_t \in S_{\text{total}}$, $|S_{\text{total}}| = 2^{\# \text{singlets}}$ $s_t = [s_1, s_2, \dots, s_n]$
- Action space: Two approaches
 - Start with all VEVs off (no F-terms, but D-terms, exotics, U(1)s) and turn VEVs on

$$A = \{s_i = 1\}$$

 Start with all VEVs on (no D-terms, exotics, U(1)s, but many F-terms) and turn VEVs off

$$A = \{s_i = 0\}$$

Heterotic RL - Model the environment

- ▶ Reward R: Need a notion of "how good a state is"
 - 1. How many F-terms does a VEV configuration generate?
 - 2. How many U(1)s are left unbroken?
 - 3. How many exotics are not decoupled?
 - 4. Is a Higgs pair kept light?
 - 5. Are all D-terms cancelled?
- Note:
 - Approaches require multi-task RL

Preliminary results - Heterotic Model Approach 2

- Reward structure:
 - +100 for each F-term that is canceled
 - +10k for keeping Higgs light while decoupling all other exotics
 - end episode if exotics increase, D-term is not canceled, U(1)s become massless
- ▶ Best state: 0/6 D-terms, 0/8 U(1)'s, 0/36 exotics, 17/1,124

Preliminary results - Heterotic Model Approach 2

- Reward structure:
 - +100 for each F-term that is canceled
 - +10k for keeping Higgs light while decoupling all other exotics
 - end episode if exotics increase, D-term is not canceled, U(1)s become massless
- ▶ Best state: 0/6 D-terms, 0/8 U(1)'s, 0/36 exotics, 17/1,124

Conclusion

- RL well suited for search & explore in the string landscape
- Very versatile applications to string theory:
 - String models in Type II intersecting brane models on toroidal orientifolds
 - Vacuum configurations for Heterotic $\mathrm{E}_8 imes \mathrm{E}_8$ string theory

Thank you for your attention!