Cosmology of Fibre Inflation Models

Michele Cicoli
Bologna Univ., INFN and ICTP
String Pheno 2018, 02 July 2018

Based on papers written with:
Burgess, Ciupke, Diaz, de Alwis, Guidetti, Mayrhofer, Muia, Pedro, Piovano, Quevedo, Shukla
Challenges for string inflation

- Conditions for viable string inflation:

 (i) approximate symmetry to control quantum corrections ➔ inflaton is a pseudo NG boson

 (ii) full moduli stabilisation to control orthogonal directions and fix all energy scales

 (iii) global CY embedding to check theoretical consistency

 (iv) understand post-inflationary cosmology to check phenomenological consistency ➔ make trustable predictions

- n_s and r depend on:

 i) N_e which depends on post-inflation:

 reheating: T_{re}? w_{re}?

 moduli domination: N_{mod}?

 $$N_e + \frac{1}{4}N_{mod} + \frac{1}{4}(1 - 3w_{re})N_{re} \approx 57 + \frac{1}{4}\ln r + \frac{1}{4}\ln \left(\frac{\rho_*}{\rho_{end}}\right)$$

 ii) fix n_s by matching observations and then predict r

 BUT Planck value of n_s depends on priors, e.g. $\Delta N_{eff} = 0$ ➔ $n_s = 0.966 \pm 0.006$

 $\Delta N_{eff} = 0.39$ ➔ $n_s = 0.983 \pm 0.006$

 can get different r! ➔ Compute amount of extra dark radiation ΔN_{eff}

 ultra-light axions?
Moduli stabilisation

- General **Swiss-cheese** form of the CY volume
 \[V = \frac{1}{6} \sum_{i,j,k=1}^{N_{\text{large}}} k_{ijk} t_i t_j t_k - \frac{1}{6} \sum_{s=1}^{N_{\text{small}}} k_{ssss} t_s^3 \]
 \[N_{\text{large}} + N_{\text{small}} = h^{1,1} \]

- EFT coordinates: **Kahler moduli**
 \[\tau_i = \text{Re}(T_i) = \frac{\partial V}{\partial t_i} \]

- Leading order: \(\alpha' \) + non-perturbative effects
 \[K = -2 \ln \left(V + \frac{\xi}{2 g_s^{3/2}} \right) \]
 \[W = W_0 + \sum_{s=1}^{N_{\text{small}}} A_s e^{-a_s T_s} \]

- **LVS models**: fix \(V + N_{\text{small}} \) del Pezzo moduli
 \[V \approx e^{a_s \tau_s} \gg 1 \quad \tau_s \approx g_s^{-1} > 1 \quad \forall s = 1, \ldots, N_{\text{small}} \]
 \[N_{\text{flat}} = h^{1,1} - N_{\text{small}} - 1 \text{ flat directions!} \]

- Flat directions lifted by **perturbative corrections**

 - Good **inflaton** candidates:
 1) Inflaton naturally lighter than \(H \)
 2) Flatness protected by approximate rescaling **shift symmetry**

 [Burgess, MC, Williams, Quevedo]
Perturbative corrections

- **String loops**: KK + winding 1-loop open string corrections
 \[K_{g_s}^{KK} = g_s \sum_i C_{KK_i}^{\perp} \frac{1}{\nu} \sim \sum_i \frac{m_{KK,i}^2}{\nu} \]

- **Higher derivatives**: \(\alpha'^3 F^4 \) terms from 10D \(R^2 G^4 \) term
 \[V_{g_s}^{W} = -2 \left(\frac{g_s}{8\pi} \right) \frac{W_0^2}{\nu^2} K_{g_s}^{W} \]

Dependence on all t-moduli!
fix all LVS flat directions for arbitrary CY if \(\lambda < 0 \)

(\(\lambda < 0 \) with \(|\lambda| \sim 10^{-3} \) from dimensional reduction)
Global CY embedding

1. General requirements for successful global embedding:

 1) Search through the Kreuzer-Skarke list for toric CY 3-folds with:
 (i) fibration structure
 (ii) at least 1 rigid blow-up mode \(N_{small} \geq 1 \)
 (iii) at least 1 flat direction \(h^{1,1} \geq 2 + N_{small} \geq 3 \)

2) Choose and orientifold involution and a D3/D7 brane setup which satisfy tadpole cancellation

3) Fix all Kahler moduli inside Kahler cone

4) Generate \(g_s \) and \(F^4 \alpha' \) terms can drive inflation

5) Turn on gauge fluxes on D7s for a chiral visible sector

6) Get an explicit dS vacuum \(\rightarrow \) use T-branes!

 - For \(h^{1,1} = 3 \) cannot satisfy (5) and (6) since FI-terms lift flat directions
 - For \(h^{1,1} = 4 \) can potentially get a global CY embedding with chirality and dS
Explicit CY models

- $h^{1,1} = 3$: explicit brane set-up + moduli stabilisation without chirality [MC,Muia,Shukla]

- CY volume:
 \[\mathcal{V} = t_1 t_2^2 + t_3^3 = \sqrt{\tau_1 \tau_2} - \tau_3^{3/2} \]

- Oguiso theorem: if \mathcal{V} is linear in t_1
 \[\tau_1 \] is a K3 or a T4 fibre over a P1 base t_1
 \[\tau_1 \] is the inflaton with \mathcal{V} constant

- $h^{1,1} = 4$: explicit brane set-up + moduli stabilisation + chirality [MC,Ciupke,Diaz,Guidetti,Muia,Shukla]

- CY volume:
 \[\mathcal{V} = t_1 t_2 \tilde{t}_2 + t_3^3 = \sqrt{\tau_1 \tau_2 \tilde{\tau}_2} - \tau_3^{3/2} \]

- \(\mathcal{V} \) is linear in t_1, t_2 and \tilde{t}_2 \(\rightarrow \) 3 K3 fibrations
- Visible sector on τ_1, τ_2 and $\tilde{\tau}_2$
- Turn on gauge fluxes \(\rightarrow \) FI-term = 0 fixes $\tau_2 \sim \tilde{\tau}_2$
- reduce to $h^{1,1} = 3$ case
- String loops + F^4 terms give inflation without tuning + chiral visible sector!
Inflation

• Potential for canonical inflaton shifted from minimum:

\[V_{\text{inf}} = \frac{A W_0^2}{(\tau_f)^2 V^2} \left(C_{\text{ds}} + e^{-2k\varphi} - 4e^{-k\varphi/2} + R_1 e^{k\varphi} + R_2 e^{k\varphi/2} \right) \]

\[C_{\text{ds}} = 3 - R_1 - R_2 \]

\[R_1 = \left(\frac{C_{f}^{KK} C_{b}^{KK}}{C_{W}} \right)^2 \frac{g_s^4}{18} \ll 1 \]

\[R_2 = \frac{18 W_0^2}{\pi} \left(\frac{C_{f}^{KK}}{C_{W}^{5/3}} \right)^{4/3} |\lambda| \frac{g_s^5/6}{V^{1/3}} \ll 1 \]

(i) for \(R_2 \ll R_1 \ll 1 \) \(\rightarrow \) Fibre inflation \[[\text{MC, Burgess, Quevedo}] \]

(ii) for \(R_1 \ll R_2 \ll 1 \) \(\rightarrow \) \(\alpha' \) inflation \[[\text{MC, Ciupke, de Alwis, Muia}] \]

Starobinsky-like model with \(\Delta \varphi \simeq 5M_p \)

| \(R_2 \) | \(n_s \) | \(r \) | \(|W_0| \) | \(|\lambda| \) | \(\delta \) |
|---|---|---|---|---|---|
| 0 | 0.964 | 0.007 | 5.7 | 0 | 0.17 |
| \(7 \times 10^{-4} \) | 0.970 | 0.008 | 6.1 | \(1.5 \times 10^{-3} \) | 0.17 |
| \(1.5 \times 10^{-3} \) | 0.977 | 0.012 | 6.7 | \(2.7 \times 10^{-3} \) | 0.17 |

\[R_1 = 10^{-6} \]

\[\delta = \frac{H^2}{m_p^2} \simeq \frac{V_{\text{inf}}}{V_{\alpha'}} \ll 1 \]

BUT predictions depend on reheating

\[n_s = n_s (\varphi^*, R) = n_s (N_e, R) = n_s (w_{rh}, T_{rh}, R) \]

\[r = r (\varphi^*, R) = r (w_{rh}, T_{rh}, R) \]
Geometrical bounds

- **Compact** inflaton moduli space due to Kahler cone
 - Upper bounded inflaton range!
 \[\frac{\Delta \phi}{M_p} \leq c \ln \mathcal{V} \]
 \[c \sim O(1) \]

- **h^{1,1} = 3**: checked for all toric LVS vacua
 i) \(\Delta \phi > M_p \) only for K3 fibred examples
 ii) agreement with weak gravity conjecture

- **h^{1,1} > 3**: conjecture for volume of reduced moduli space \(\mathcal{M}_r \)
 - \(\Lambda \sim M_p / \mathcal{V}^{2/3} \) (KK scale)

- 3 classes of LVS models for \(h^{1,1} = 3 \):
 1) \(n_{\text{ddP}} = 2 \) and \(n_{K3f} = 0 \): Strong Swiss cheese
 \[\mathcal{V} = \alpha \tau_b^{3/2} - \beta_1 \tau_s^{3/2} - \beta_2 \tau_s^{3/2} \]
 2) \(n_{\text{ddP}} = 1 \) and \(n_{K3f} = 1 \): K3 fibration
 \[\mathcal{V} = \alpha \sqrt{\tau_f} \tau_b - \beta \tau_s^{3/2} \]
 3) \(n_{\text{ddP}} = 1 \) and \(n_{K3f} = 0 \): 2 subcases
 for \(\tau_s \to 0 \)
 - Structureless: \(\mathcal{V} = f_{3/2}(\tau_1, \tau_2) - \beta \tau_s^{3/2} \)
 - Strong Swiss cheese-like:
 \[\mathcal{V} = \alpha \tau_b^{3/2} - \beta_1 \tau_s^{3/2} - \beta_2 (\gamma_1 \tau_s + \gamma_2 \tau_s^*)^{3/2} \]
Scanning results

- **Analytical proof + scanning results**
- **Scan of LVS geometries for** \(h^{1,1} = 2, 3, 4 \)

<table>
<thead>
<tr>
<th>(h^{1,1})</th>
<th>(n_{CY})</th>
<th>(n_{LVS})</th>
<th>(%)</th>
<th>(n_{ddP = 1})</th>
<th>(n_{ddP = 2})</th>
<th>(n_{ddP = 3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>39</td>
<td>22</td>
<td>56.4%</td>
<td>22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>305</td>
<td>132</td>
<td>43.3%</td>
<td>93</td>
<td>39</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1997</td>
<td>749</td>
<td>37.5%</td>
<td>464</td>
<td>261</td>
<td>24</td>
</tr>
</tbody>
</table>

- **Classes of LVS models for** \(h^{1,1} = 3 \)

<table>
<thead>
<tr>
<th>(h^{1,1})</th>
<th>(n_{CY})</th>
<th>(n_{LVS})</th>
<th>SSC</th>
<th>K3 fibred</th>
<th>SSC-like</th>
<th>structureless</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>305</td>
<td>132</td>
<td>39</td>
<td>43</td>
<td>36</td>
<td>14</td>
</tr>
</tbody>
</table>

- **Scan of reduced moduli space size for** \(h^{1,1} = 3, \nu = 10^5 \) and \(g_s = 0.1 \)

- Right ballpark to match \(\delta \rho/\rho \)
Bound on tensor modes

- Generic LVS inflationary model

\[V \simeq V_0 \left(1 - c_1 e^{-c_2 \phi} \right) \quad \rightarrow \quad \epsilon = \frac{1}{2} \left(\frac{V'}{V}\right)^2 \simeq \frac{1}{2} c_1^2 c_2^2 e^{-2c_2 \phi} \]

- For \(\epsilon(\phi_{\text{end}}) \simeq 1 \) and \(r(\phi_*) = 16 \epsilon(\phi_*) \)

\[N_e = \int_{\phi_{\text{end}}}^{\phi_*} \frac{8}{r(\phi)} \, d\phi \quad \rightarrow \quad \frac{\Delta \phi}{M_p} \simeq \frac{N_e}{2} \sqrt{\frac{r(\phi_*)}{2}} \ln \left(\frac{4}{\sqrt{r(\phi_*)}} \right) \]

- Combine with upper bound \(\Delta \phi / M_p \leq c \ln V \) for \(N_e = 50 \)

Observations sensitive to \(r(\phi_*) \) of order 0.05 should not see tensors!
Reheating

- End of inflation: transfer inflaton energy to SM dof
SM and dark radiation

- Where is the SM?
- Ultra-light bulk axions from inflaton decay contribute to ΔN_{eff}
- Observational constraint: $\Delta N_{\text{eff}} \lesssim 1$

\[
\begin{align*}
\text{Inflaton } \phi \\
\text{SM dof} & \quad \text{Bulk axions} \\
\end{align*}
\]

\[\Gamma_{\Phi \rightarrow a_1 a_1} = \frac{1}{24\pi} \frac{m_{\Phi}^3}{M_P^2} \quad \Gamma_{\Phi \rightarrow \text{hidden}} = \frac{5}{2} \Gamma_0 \quad \Gamma_0 = \frac{1}{48\pi} \frac{m_{\Phi}^3}{M_P^2}\]

- Decay rates into bulk axions [Angus] [Hebecker, Mangat, Rompineve, Witkowski]

- SM on D3s at a singularity \[\Gamma_{\Phi \rightarrow \text{visible}} \approx \left(\frac{\alpha_{\text{SM}}}{4\pi}\right)^2 \Gamma_0\]

\[\Delta N_{\text{eff}} \sim \left(\frac{4\pi}{\alpha_{\text{SM}}^2}\right)^2 \sim 10^4\]

Dark radiation overproduction!

\[\text{SM on D7s wrapping inflaton cycle to increase branching ratio into visible dof}\]
Reheating and dark radiation

- SM con D7s wrapping bulk cycles τ_b and τ_f \rightarrow desequestering
- $M_{soft} \sim m_{3/2} \sim 10^{14}$ GeV $\gg m_\Phi \sim 10^{12}$ GeV \rightarrow inflaton cannot decay to SUSY particles
- Unsuppressed inflaton decay to SM Higgs + would-be GBs + massless gauge bosons

\[
\begin{align*}
\Gamma_{\Phi \rightarrow AA} &= N_g \Gamma_0 \\
\Gamma_{\Phi \rightarrow \text{Higgs}} &= f(\alpha, \beta) \frac{z^2}{16} \Gamma_0 \\
K_{\text{matter}} &= \tilde{K}_{H_u} \tilde{H}_u H_u + \tilde{K}_{H_d} \tilde{H}_d H_d + z \sqrt{\frac{\tau_f}{\mathcal{V}}} (H_u H_d + h.c.)
\end{align*}
\]

- Dark radiation predictions

\[
\Delta N_{\text{eff}} = \frac{43}{7} \frac{5}{2} \left(\frac{10.75}{g_*(T_{rh})} \right)^{1/3} \frac{1}{c_{\text{vis}}} \\
c_{\text{vis}} = 12 + f(\alpha, \beta) \frac{z^2}{16}
\]

- Reheating temperature:

\[
T_{rh} \simeq m_\Phi \sqrt{\frac{m_\Phi}{M_P}} \sim 10^9 \text{ GeV} \quad \rightarrow \quad g_*(T_{rh}) = 106.5 \quad \rightarrow \quad N_e \approx 52
\]

\[
\tan \beta = 1 \quad \beta = \alpha = \frac{\pi}{4} \quad \rightarrow \quad \Delta N_{\text{eff}} = \frac{114.4}{192 + 5z^2} \simeq 0.6 \quad \text{for} \quad z = 0
\]

\[
\Delta N_{\text{eff}} \approx 0.6 \quad \text{as a prior for Planck} \quad \rightarrow \quad n_s = n_s(N_e, \mathcal{R}) = n_s(\mathcal{R}) \approx 0.99
\]

\[
\text{fix } \mathcal{R} \quad \rightarrow \quad \text{prediction: } \quad r = r(N_e, \mathcal{R}) = r(\mathcal{R}) \approx 0.01
\]
PBH DM

- What is the origin of DM?
- Occam’s razor: no new particles/modification of gravity \[\text{BHs as DM} \]
- PBHs form when large and rare fluctuations re-enter the horizon:

\[
M = \gamma \frac{4\pi}{3} \left(\frac{\rho_{\text{tot}}}{H^3} \right) f = 4\pi \gamma \frac{M_p^2}{H_f}
\]

- E-foldings-mass relation:

\[
\Delta N_{CMB}^{PBH} = 18.4 - \frac{1}{12} \ln \left(\frac{g_*}{g_{*0}} \right) + \frac{1}{2} \ln \gamma - \frac{1}{2} \ln \left(\frac{M}{M_\odot} \right)
\]

\[\text{low-mass region: } \Delta N_{CMB}^{PBH} \approx 34.5 \]

No known astrophysical mechanism for

\[10^{-16} M_\odot \leq M_{\text{PBH}} \leq 10^{-14} M_\odot \]

\[\text{BHs have to be primordial} \]

Lower bound from evaporation

\[M_{\text{PBH}} \geq 10^{-17} M_\odot \]

See Diaz’s talk.
PBH formation
PBH abundance

• PBHs form when $\zeta \geq \zeta_c$ re-enter the horizon:

• Collapse fraction:

$$\beta_f(M) = \frac{\rho_{PBH}(M)}{\rho_{tot}} \Bigg|_f = \left[\int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi \sigma_M^2}} e^{-\frac{\zeta^2}{2\sigma_M^2}} d\zeta \right] \approx \sigma_M \frac{1}{\sqrt{2\pi \zeta_c^2}}$$

$$\sigma_M^2 \approx \langle \zeta \zeta \rangle \approx P_k \ll \zeta_c$$

• Exponentially sensitive to critical value $\zeta_c \approx 1$

• PBHs redshift as matter → present abundance

$$\beta_o(M) = \Omega_{DM} \frac{\rho_{PBH}(M)}{\rho_{DM}} \Bigg|_o = 0.26 f_{PBH}(M) \quad \rightarrow \quad \beta_f(M) \approx 10^{-8} \sqrt{\frac{M}{M_\odot}} f_{PBH}(M)$$

• 100% of DM in PBHs in the low-mass region:

$$f_{PBH}(M) \approx 1 \quad M \approx 10^{-15} M_\odot \quad \rightarrow \quad \beta_f(M) \approx 3 \times 10^{-16}$$

$$P_k \Bigg|_{PBH} \approx 10^7 \times P_k \Bigg|_{CMB} \approx 10^{-2} \quad \frac{\delta \rho}{\rho} \approx 0.1$$

Perturbation theory under control?
PBHs from inflation

• For single field dynamics

• Power spectrum in slow-roll approximation:
 \[P_k = \frac{H^2}{8\pi^2\varepsilon} \]
 \[\varepsilon \approx \frac{1}{2} \left(\frac{V_\varphi}{V} \right)^2 \]

• Enhancement for \(\varepsilon \to 0 \iff V_\varphi \approx 0 \)
 Near inflection point

• \(\varepsilon \) controls the velocity:
 \[\varepsilon = -\frac{\dot{H}}{H^2} = \frac{1}{2} \frac{\dot{\phi}^2}{H^2} \]
 \(\varepsilon_{PBH} \approx 10^{-7} \times \varepsilon_{CMB} \)
 Velocity varies a lot!

• Deceleration no-longer negligible
 Violation of slow-roll

• Need to solve Mukhanov-Sasaki equation for rescaled curvature perturbations:
 \[u_k''(\tau) + \left(k^2 - \frac{z''}{z} \right) u_k(\tau) = 0 \]
 \[\frac{z''}{z} = \left(aH \right)^2 \left[2 - \varepsilon + \frac{3}{2} \eta - \frac{1}{2} \varepsilon \eta + \frac{1}{4} \eta^2 + \frac{1}{2} \eta \kappa \right] \]

\[\zeta = u / z \quad z \equiv \sqrt{2\varepsilon a} \]
\[\eta = \frac{\dot{\varepsilon}}{\varepsilon H} \quad \kappa = \frac{\dot{\eta}}{\eta H} \]
Ultra slow-roll

- Klein-Gordon eq. in expanding universe:

\[\ddot{\phi} + 3H \dot{\phi} + V_\phi = 0 \]

i) Constant velocity: \(\dot{\phi} \approx 0 \)

\[\rightarrow \quad 3H \dot{\phi} \approx -V_\phi \quad \text{Slow roll} \]

ii) Near inflection point: \(V_\phi \approx 0 \)

\[\rightarrow \quad \dot{\phi} \approx -3H \dot{\phi} \quad \text{Ultra slow-roll} \quad \rightarrow \quad \text{deceleration} \]

\[\varepsilon = \frac{1}{2} \frac{\dot{\phi}^2}{H^2} \ll 1 \]

\[\eta = 2 \left(\frac{\ddot{\phi}}{H \dot{\phi}} + \varepsilon \right) \approx -6 \]

- Power spectrum for super-horizon scales:

\[P_k \propto H^{[\lambda]-1} a^{\lambda+|\dot{\lambda}|} \]

\[\lambda \equiv 3 + 2\alpha \quad \dot{\phi} \equiv -(3 + \alpha) H \dot{\phi} \]

i) Constant mode for \(\lambda < 0 \) \(\iff \quad -3 \leq \alpha < -3/2 \)

ii) Growing mode for \(\lambda > 0 \) \(\iff \quad \alpha > -3/2 \)

\[\rightarrow \quad \text{Ultra slow-roll + growing mode help to produce PBHs} \]

[Martin,Motohashi,Suyama]

[Motohashi,Starobinsky,Yokoyama]
PBHs from Fibre Inflation

- Original Fibre inflation potential not rich enough to generate PBHs
- Embedding in explicit CY threefolds with O3/O7, D3/D7, moduli stabilisation, tadpole cancellation and chiral matter

 more general structure of corrections

\[\delta V_w = W_0^2 \frac{\tau_{K3}}{V^4} \left(D_w - \frac{G_w}{1 + R_w \frac{\tau_{K3}^{3/2}}{V}} \right) \]

Term responsible for near inflection point

potential rich enough to tune a near-inflation point:

- Parameters depend on flux quanta and CY intersections
 - Tuning freedom from string landscape
- Approximate shift symmetry for \(\tau_{K3} \)
 - Tuning is technically natural
Superhorizon evolution and power spectrum

\[n_s = 0.9437 \]
\[\frac{dn_s}{d \ln k} = -0.0017 \]
\[r = 0.015 \]

3\(\sigma\) tension with data for \(n_s\) shared by other single field PBH models BUT…
Open issues

• **Right critical value?**
 Recently: use critical density, instead of curvature, perturbations
 \[\zeta_c \approx 1 \rightarrow 0.5 \]
 \[P_k|_{PBH} \approx 10^7 \times P_k|_{CMB} \approx 10^{-2} \rightarrow P_k|_{PBH} \approx 10^{-3} \]

 \[\rightarrow \text{get a larger } n_s! \]

• **Perturbation theory under control?**
 Recently: backreaction of perturbations with stochastic analysis
 \[P_k|_{PBH} \approx 10^{-3} \rightarrow P_k|_{PBH} \approx 10^{-6} \]

 \[\rightarrow \text{Huge effect!} \]

• **Non-gaussianities?**
 Recently: increase PBH abundance
 \[\text{get much larger } n_s \text{ and much less tuning!} \]

[Yoo, Harada, Garriga, Kohri]
[Germani, Musco]
[Ezquiaga, Garcia, Biagetti, Franciolini, Kehagias, Riotto]

\[n_s \approx 0.5 \rightarrow 1 \]
\[c \zeta \rightarrow 1 \]
\[10^{-3} \times \text{PBH} \text{ CMB} \text{ PBH} \rightarrow 10^{-6} \]

\[7 \times 10^{-2} \times \text{PBH} \text{ PBH} \rightarrow 10^{-3} \times \text{PBH} \text{ PBH} \rightarrow 10^{-6} \]

\[k \times 10^{10} \]

\[k \times 10^{10} \rightarrow k \times 10^{10} \]
Outlook

• **Goal:** understand PBH production from strings: generic mechanism, preferred PBH masses

• **To do:**

 i) Redo the analysis with $\zeta_c \approx 0.5$, quantum diffusion + non-Gaussianities

 ii) Consider more general Fibre Inflation potential

 iii) Find other single-field potentials from strings, axions? [Ozsoy, Parameswaran, Tasinato, Zavala]

 iv) Consider matter domination due to light moduli (axions) at horizon re-entry

 v) Find curvaton-like mechanism for PBH production, axions? [Ando, Inomata, Kawasaki, Mukaida, Yanagida]

 vi) Study oscillon (oscilloton) collapse into BHs at the end of inflation

 [Antusch, Cefalà, Krippendorf, Muia, Orani, Quevedo] [Helfer, Marsh, Clough, Fairbairn, Lim, Becerril]

 → much smaller and lighter BHs → reheating and DM from evaporation?

 [Lennon, March-Russell, Petrossian-Byrne, Tillim]
A geometrical instability?

- **Spectator fields** during inflation: heavy \((m_{\text{heavy}} \gg H)\) + light \((m_{\text{light}} \ll m_{\text{inf}} \ll H)\)
- Effective mass of isocurvature pert.

\[
m_{\text{eff}}^2 = V_{\perp \perp} - \Gamma^i_{\perp \perp} V_i + \left(\varepsilon R + 3\eta_{\perp}^2 \right) H^2 \quad \eta_{\perp} = \frac{\dot{\phi}}{H} \kappa^{-1}
\]

- Geometrical destabilisation during inflation in a non-linear sigma model?
- Dangerous even for heavy fields with geodesic trajectories \((\eta_{\perp} = 0)\) when \(R < 0\) since

\[
m_{\text{eff}}^2 = V_{\perp \perp} - \Gamma^i_{\perp \perp} V_i - \varepsilon |R| H^2 < 0 \quad \text{if} \quad |R| = M_p / M \gg 1
\]

- NB: \(R < 0\) generic in supergravity since \(K = -3 \ln(T + \bar{T})\) → \(R = -8 / 3\)

BUT \(m_{\text{eff}}^2 > 0\) if computed on attractor background trajectory with \(\eta_{\perp} \neq 0\)!

- Real issue for ultra-light fields with \(V_{\perp \perp} = 0\) when \(R < 0\)

\[
m_{\text{eff}}^2 = -\Gamma^i_{\perp \perp} V_i - \varepsilon |R| H^2 + 3\eta_{\perp}^2 H^2
\]

1) **Bending trajectory** with \(\eta_{\perp} \neq 0\) can give \(m_{\text{eff}}^2 > 0\)

 → Isocurvature pert. source curvature pert. → effectively single-field

2) **Geodesic trajectory** with \(\eta_{\perp} = 0\)

\[
m_{\text{eff}}^2 = -\Gamma^i_{\perp \perp} V_i - \varepsilon |R| H^2 < 0 \quad \text{if} \quad \Gamma^i_{\perp \perp} V_i > 0
\]

 → Isocurvature pert. grow → perturbation theory breaks down

 → non-perturbative analysis (numerical)

 → Intuition: kick along ultra-light direction and backreaction from \(\eta_{\perp} \neq 0\)?
Conclusions

1) **Type IIB Fibre Inflation** models: natural inflationary directions

2) **Moduli stabilisation**: non-perturbative + α' effects + string loops + F^4 terms

3) **Effective symmetry**: non-compact rescalings

4) Plateau-like inflation with large tensors: $0.005 \lesssim r \lesssim 0.01$

5) Global CY embedding: $h^{1,1} = 3$ case without chirality + chirality for $h^{1,1} \geq 4$

6) Compact reduced moduli space with $\Delta \phi / M_p \leq c \ln \mathcal{V}$ with $\Delta \phi > M_p$ only for K3-fibrations

7) General prediction: $r \lesssim 0.01$ \rightarrow agreement with weak gravity conjecture

8) **Reheating**: visible sector on bulk cycles due to generic $\Delta N_{\text{eff}} \neq 0$

9) $N_e \approx 52$ and $\Delta N_{\text{eff}} \approx 0.6$ \rightarrow $n_s \approx 0.99$ and $r \approx 0.01$

10) Potential rich enough to have a plateau + near inflection point

11) Power spectrum enhancement due to ultra slow roll + growing mode

12) PBHs in the **low-mass region** as 100% of DM

13) Are **ultra-light fields** stable during inflation?