Cosmology of Fibre Inflation Models

Michele Cicoli

Bologna Univ., INFN and ICTP String Pheno 2018, 02 July 2018

ALMA MATER STUDIORUM Università di Bologna

Based on papers written with: Burgess, Ciupke, Diaz, de Alwis, Guidetti, Mayrhofer, Muia, Pedro, Piovano, Quevedo, Shukla

Challenges for string inflation

- Conditions for viable string inflation:
 - (i) approximate symmetry to control quantum corrections

inflaton is a pseudo NG boson

(ii) full moduli stabilisation to control orthogonal directions and fix all energy scales
(iii) global CY embedding to check theoretical consistency
(iv) understand post-inflationary cosmology to check phenomenological consistency

make trustable predictions

- n_s and r depend on:
 - i) N_e which depends on post-inflation: reheating: T_{re} ? w_{re} ? moduli domination: N_{mod} ? $N_e + \frac{1}{4}N_{mod} + \frac{1}{4}(1 - 3w_{re})N_{re} \approx 57 + \frac{1}{4}\ln r + \frac{1}{4}\ln\left(\frac{\rho_*}{\rho_{end}}\right)$

ii) fix n_s by matching observations and then predict r BUT Planck value of n_s depends on priors, e.g. $\Delta N_{eff} = 0$ \longrightarrow n_s = 0.966 ± 0.006 $\Delta N_{eff} = 0.39$ \longrightarrow n_s = 0.983 ± 0.006 can get different r! \longrightarrow Compute amount of extra dark radiation ΔN_{eff} ultra-light axions?

Moduli stabilisation

• General Swiss-cheese form of the CY volume

$$\mathcal{V} = \frac{1}{6} \sum_{i,j,k=1}^{N_{\text{large}}} k_{ijk} t_i t_j t_k - \frac{1}{6} \sum_{s=1}^{N_{\text{small}}} k_{sss} t_s^3 \qquad \qquad N_{\text{large}} + N_{\text{small}} = h^{1,1}$$

 EFT coordinates: Kahler moduli
 τ_i = Re(T_i) = ∂ν/∂t_i
 Leading order: α' + non-perturbative effects

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{2g_s^{3/2}}\right) \qquad W = W_0 + \sum_{s=1}^{N_{\text{small}}} A_s \ e^{-a_s T_s}$$

LVS models: fix V + N_{small} del Pezzo moduli

$$V \simeq e^{a_s \tau_s} \gg 1$$
 $\tau_s \simeq g_s^{-1} > 1$ $\forall s = 1, ..., N_{\text{small}}$ \longrightarrow $N_{\text{flat}} = h^{1,1} - N_{\text{small}} - 1$ flat directions!

Flat directions lifted by perturbative corrections

- Good inflaton candidates:
- 1) Inflaton naturally lighter than H
- 2) Flatness protected by approximate rescaling shift symmetry

Perturbative corrections

Higher derivatives: α^{'3} F⁴ terms from 10D R² G⁴ term [Ciupke, Louis, Westphal]

$$V_{F^4} = -\left(\frac{g_s}{8\pi}\right)^2 \frac{3^4 \lambda W_0^4}{g_s^{3/2} \mathcal{V}^4} \,\Pi_i t_i$$

$$\Pi_m = \int_X c_2 \wedge \hat{D}_m$$

Dependence on all t-moduli! \longrightarrow fix all LVS flat directions for arbitrary CY if $\lambda < 0$ [MC,Ciupke, de Alwis, Muia] ($\lambda < 0$ with $|\lambda| \sim 10^{-3}$ from dimensional reduction)

[Green, Mayer, Weissenbacher]

Global CY embedding

• General requirements for successful global embedding: 1) Search through the Kreuzer-Skarke list for toric CY 3-folds with: (i) fibration structure (ii) at least 1 rigid blow-up mode $\longrightarrow N_{small} \ge 1$ (iii) at least 1 flat direction $N_{flat} = h^{1,1} - N_{small} - 1 \ge 1$ $h^{1,1} \ge 2 + N_{small} \ge 3$

2) Choose and orientifold involution and a D3/D7 brane setup which satisfy tadpole cancellation

- 3) Fix all Kahler moduli inside Kahler cone
- 4) Generate g_s and $F^4 \alpha'$ terms can drive inflation
- 5) Turn on gauge fluxes on D7s for a chiral visible sector

6) Get an explicit dS vacuum ____ use T-branes! [MC, Quevedo, Valandro]

- For $h^{1,1} = 3$ cannot satisfy (5) and (6) since FI-terms lift flat directions
- For h^{1,1} = 4 can potentially get a global CY embedding with chirality and dS

[MC, Ciupke, Diaz, Guidetti, Muia, Shukla]

See Guidetti's talk

[MC,Muia,Shukla]

Explicit CY models

- h^{1,1} = 3: explicit brane set-up + moduli stabilisation without chirality
- CY volume:

$$\mathcal{V} = t_1 t_2^2 + t_3^3 = \sqrt{\tau_1} \tau_2 - \tau_3^{3/2}$$

- Oguiso theorem: if v is linear in t_1
 - τ_1 is a K3 or a T⁴ fibre over a P¹ base t₁
 - \rightarrow τ_1 is the inflaton with V constant
- $h^{1,1} = 4$: explicit brane set-up + moduli stabilisation + chirality
- CY volume:

$$\mathcal{V} = t_1 t_2 \tilde{t}_2 + t_3^3 = \sqrt{\tau_1 \tau_2 \tilde{\tau}_2} - \tau_3^{3/2}$$

- V is linear in t_1 , t_2 and $\tilde{t_2} \longrightarrow 3$ K3 fibrations
- Visible sector on τ_1 , τ_2 and $\tilde{\tau}_2$
- Turn on gauge fluxes \longrightarrow FI-term = 0 fixes $\tau_2 \sim \tilde{\tau}_2$ \longrightarrow reduce to $h^{1,1} = 3$ case
- String loops + F⁴ terms give inflation without tuning + chiral visible sector!

[MC,Muia,Shukla]

[MC,Ciupke,Diaz,Guidetti,Muia,Shukla]

Inflation

Geometrical bounds

- Compact inflaton moduli space due to Kahler cone
 - Upper bounded inflaton range!
- h^{1,1} = 3: checked for all toric LVS vacua
 i) Δφ > M_p only for K3 fibred examples
 ii) agreement with weak gravity conjecture
- $h^{1,1} > 3$: conjecture for volume of reduced moduli space \mathcal{M}_r

$$\operatorname{Vol}(\mathcal{M}_r) \lesssim \left[\ln\left(\frac{M_p}{\Lambda}\right)\right]^{\dim(\mathcal{M}_r)}$$

$$\Lambda \sim M_p / \mathcal{V}^{2/3}$$
 (KK scale)

Structureless:

$$\frac{\Delta \phi}{M_p} \le c \, \ln \mathcal{V} \qquad \qquad c \sim \mathcal{O}(1)$$
[MC, Ciupke, Mayr

 $\mathcal{V} = f_{3/2}(\tau_1, \tau_2) - \beta \tau_s^{3/2}$

2) $n_{\text{ddP}} = 1$ and $n_{\text{K3f}} = 1$: K3 fibration

3 classes of LVS models for $h^{1,1} = 3$:

1) $n_{\rm ddP} = 2$ and $n_{\rm K3f} = 0$: Strong Swiss cheese

$$\mathcal{V} = \alpha \sqrt{\tau_f} \, \tau_b - \beta \, \tau_s^{3/2}$$

 $\mathcal{V} = \alpha \, \tau_{\rm h}^{3/2} - \beta_1 \, \tau_{s_1}^{3/2} - \beta_2 \, \tau_{s_2}^{3/2}$

3) $n_{\rm ddP} = 1$ and $n_{\rm K3f} = 0$: 2 subcases for $\tau_{\rm s} \rightarrow 0$

Strong Swiss cheese-like: $\mathcal{V} = \alpha \tau_b^{3/2} - \beta_1 \tau_s^{3/2} - \beta_2 (\gamma_1 \tau_s + \gamma_2 \tau_*)^{3/2}$

See Shukla's talk

Mavrhofer, Shuklal

Scanning results

[MC, Ciupke, Mayrhofer, Shukla]

- Analytical proof + scanning results
- Scan of LVS geometries for h^{1,1} = 2, 3, 4

$h^{1,1}$	$n_{ m CY}$	$n_{ m LVS}$	%	$n_{\rm ddP} = 1$	$n_{\rm ddP}=2$	$n_{\rm ddP}=3$
2	39	22	56.4%	22	_	_
3	305	132	43.3%	93	39	_
4	1997	749	37.5%	464	261	24

Classes of LVS models for h^{1,1} = 3

$h^{1,1}$	$n_{ m CY}$	$n_{ m LVS}$	SSC	K3 fibred	SSC-like	structureless
3	305	132	39	43	36	14

Right ballpark

to match $\delta \rho / \rho$

• Scan of reduced moduli space size for $h^{1,1} = 3$, $V = 10^5$ and $g_s = 0.1$

Bound on tensor modes

[MC, Ciupke, Mayrhofer, Shukla]

• Generic LVS inflationary model

$$V \simeq V_0 \left(1 - c_1 e^{-c_2 \phi} \right) \longrightarrow \epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2 \simeq \frac{1}{2} c_1^2 c_2^2 e^{-2c_2 \phi}$$

• For $\epsilon(\phi_{\text{end}}) \simeq 1$ and $r(\phi_*) = 16 \epsilon(\phi_*)$

$$N_e = \int_{\phi_{\text{end}}}^{\phi_*} \sqrt{\frac{8}{r(\phi)}} \, \mathrm{d}\phi \qquad \longrightarrow \qquad \frac{\Delta\phi}{M_p} \simeq \frac{N_e}{2} \sqrt{\frac{r(\phi_*)}{2}} \ln\left(\frac{4}{\sqrt{r(\phi_*)}}\right)$$

• Combine with upper bound $\Delta \phi/M_p \le c \ln V$ for $N_e = 50$

Reheating

• End of inflation: transfer inflaton energy to SM dof

SM and dark radiation

- Where is the SM?
- Ultra-light bulk axions from inflaton decay contribute to ΔN_{eff}
- Observational constraint: $\Delta N_{eff} \leq 1$

Dark radiation overproduction!

SM on D7s wrapping inflaton cycle to increase branching ratio into visible dof

Reheating and dark radiation

[MC, Piovano]

- SM con D7s wrapping bulk cycles τ_b and τ_f \longrightarrow desequestering
- $M_{soft} \sim m_{3/2} \sim 10^{14} \text{ GeV} \gg m_{\Phi} \sim 10^{12} \text{ GeV}$ inflaton cannot decay to SUSY particles
- Unsuppressed inflaton decay to SM Higgs + would-be GBs + massless gauge bosons

$$\Gamma_{\Phi \to AA} = N_g \Gamma_0 \qquad N_g = 12$$

$$\Gamma_{\Phi \to \text{Higgs}} = f(\alpha, \beta) \frac{z^2}{16} \Gamma_0 \qquad f(\alpha, \beta) = 3\sin^2(2\beta) + \sin^2(2\alpha)$$

$$K_{\text{matter}} = \tilde{K}_{H_u} \bar{H}_u H_u + \tilde{K}_{H_d} \bar{H}_d H_d + z \frac{\sqrt{\tau_f}}{\mathcal{V}} (H_u H_d + h.c.)$$

• Dark radiation predictions

$$\Delta N_{\rm eff} = \frac{43}{7} \frac{5}{2} \left(\frac{10.75}{g_*(T_{\rm rh})} \right)^{1/3} \frac{1}{c_{\rm vis}} \qquad c_{\rm vis} = 12 + f(\alpha, \beta) \frac{z^2}{16}$$

• Reheating temperature:

$$T_{rh} \simeq m_{\phi} \sqrt{\frac{m_{\phi}}{M_{P}}} \sim 10^{9} \text{ GeV} \longrightarrow g_{*}(T_{rh}) = 106.5 \longrightarrow N_{e} \simeq 52$$

$$\tan \beta = 1 \quad \beta = \alpha = \frac{\pi}{4} \longrightarrow \Delta N_{eff} = \frac{114.4}{192 + 5z^{2}} \simeq 0.6 \text{ for } z = 0$$

$$\longrightarrow \Delta N_{eff} \approx 0.6 \text{ as a prior for Planck} \longrightarrow n_{s} = n_{s}(N_{e}, \mathcal{R}) = n_{s}(\mathcal{R}) \simeq 0.99$$

$$\longrightarrow \text{ fix } \mathcal{R} \longrightarrow \text{ prediction: } r = r(N_{e}, \mathcal{R}) = r(\mathcal{R}) \simeq 0.01$$

PBH DM

• What is the origin of DM?

• PBHs form when large and rare fluctuations re-enter the horizon:

$$M = \gamma \frac{4\pi}{3} \frac{\rho_{tot}}{H^3} \bigg|_f = 4\pi \gamma \frac{M_p^2}{H_f}$$

• E-foldings-mass relation:

$$\Delta N_{CMB}^{PBH} = 18.4 - \frac{1}{12} \ln \left(\frac{g_*}{g_{*0}} \right) + \frac{1}{2} \ln \gamma - \frac{1}{2} \ln \left(\frac{M}{M_{\odot}} \right) \qquad \text{low-mass region:} \quad \Delta N_{CMB}^{PBH} \simeq 34.5$$

PBH formation

PBH abundance

- PBHs form when $\zeta \geq \zeta_c$ re-enter the horizon:
- Collapse fraction:

$$\beta_f(M) = \frac{\rho_{PBH}(M)}{\rho_{tot}} \bigg|_f = \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma_M}} e^{-\frac{\zeta^2}{2\sigma_M^2}} d\zeta \simeq \frac{\sigma_M}{\sqrt{2\pi\zeta_c}} e^{-\frac{\zeta_c^2}{2\sigma_M^2}}$$
$$\sigma_M^2 \simeq \langle \zeta\zeta \rangle \simeq P_k \ll \zeta_c$$

- Exponentially sensitive to critical value $\zeta_c \simeq 1$
- PBHs redshift as matter _____ present abundance

$$\beta_{o}(M) = \Omega_{DM} \left. \frac{\rho_{PBH}(M)}{\rho_{DM}} \right|_{o} = 0.26 f_{PBH}(M) \qquad \longrightarrow \qquad \beta_{f}(M) \simeq 10^{-8} \sqrt{\frac{M}{M_{\odot}}} f_{PBH}(M)$$

• 100% of DM in PBHs in the low-mass region:

 $f_{PBH}(M) \simeq 1$ $M \simeq 10^{-15} M_{\odot}$ \longrightarrow $\beta_f(M) \simeq 3 \times 10^{-16}$ \longrightarrow $P_k \big|_{PBH} \simeq 10^7 \times P_k \big|_{CMB} \simeq 10^{-2}$ $\frac{\delta \rho}{\rho} \simeq 0.1$ Perturbation theory under control?

PBHs from inflation

Need to solve Mukhanov-Sasaki equation for rescaled curvature perturbations:

$$u_{k}''(\tau) + \left(k^{2} - z'' / z\right)u_{k}(\tau) = 0 \qquad \qquad \zeta = u / z \qquad \qquad z \equiv \sqrt{2\varepsilon a}$$
$$\frac{z''}{z} = \left(aH\right)^{2} \left[2 - \varepsilon + \frac{3}{2}\eta - \frac{1}{2}\varepsilon\eta + \frac{1}{4}\eta^{2} + \frac{1}{2}\eta\kappa\right] \qquad \qquad \eta = \frac{\dot{\varepsilon}}{\varepsilon H} \qquad \qquad \kappa = \frac{\dot{\eta}}{\eta H}$$

Ultra slow-roll

Klein-Gordon eq. in expanding universe:

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{\varphi} = 0$$

[Martin, Motohashi, Suyama] [Motohashi,Starobinsky,Yokoyama]

CD

 $\alpha - 3$

i) Constant velocity:
$$\ddot{\varphi} \approx 0$$

 $\rightarrow 3H\dot{\varphi} \approx -V_{\varphi}$ Slow roll
ii) Near inflection point: $V_{\varphi} \approx 0$
 $\phi \approx -3H\dot{\varphi}$ Ultra slow-roll ϕ deceleration
 $\varepsilon = \frac{1}{2}\frac{\dot{\varphi}^2}{H^2} \ll 1$ $\eta = 2\left(\frac{\ddot{\varphi}}{H\dot{\varphi}} + \varepsilon\right) \approx -6$

Power spectrum for super-horizon scales:

$$P_k \propto H^{|\lambda|-1} a^{\lambda+|\lambda|} \qquad \lambda \equiv 3+2\alpha \qquad \ddot{\varphi} \equiv -(3+\alpha)H\dot{\varphi} \qquad \alpha \equiv 0 \qquad \text{USR}$$

i) Constant mode for $\lambda < 0 \iff -3 \le \alpha < -3/2$

ii) Growing mode for $\lambda > 0 \iff \alpha > -3/2$

Ultra slow-roll + growing mode help to produce PBHs

PBHs from Fibre Inflation

[MC, Diaz, Pedro]

- Original Fibre inflation potential not rich enough to generate PBHs
- Embedding in explicit CY threefolds with O3/O7, D3/D7, moduli stabilisation, tadpole cancellation and chiral matter
 - more general structure of corrections

$$\delta V_{\rm W} = W_0^2 \, \frac{\tau_{\rm K3}}{\mathcal{V}^4} \left(D_{\rm W} - \frac{G_{\rm W}}{1 + R_{\rm W} \frac{\tau_{\rm K3}^{3/2}}{\mathcal{V}}} \right)$$

 $D_{\rm W} \sim G_{\rm W} \sim R_{\rm W} \sim \mathcal{O}(1)$

Term responsible for near inflection-point

potential rich enough to tune a near-inflection point:

Superhorizon evolution and power spectrum

Open issues

Outlook

- Goal: understand PBH production from strings: generic mechanism, preferred PBH masses
- To do:
 - i) Redo the analysis with $\zeta_c \simeq 0.5$, quantum diffusion + non-Gaussianities
 - ii) Consider more general Fibre Inflation potential
 - iii) Find other single-field potentials from strings, axions? [Ozsoy, Parameswaran, Tasinato, Zavala]
 - iv) Consider matter domination due to light moduli (axions) at horizon re-entry
 - v) Find curvaton-like mechanism for PBH production, axions? [Ando,Inomata,Kawasaki,Mukaida,Yanagida]
 - vi) Study oscillon (oscilloton) collapse into BHs at the end of inflation

[Antusch,Cefalà,Krippendorf,Muia,Orani,Quevedo] [Helfer,Marsh,Clough,Fairbairn,Lim,Becerril]

much smaller and lighter BHs ----- reheating and DM from evaporation?

[Lennon, March-Russell, Petrossian-Byrne, Tillim]

A geometrical instability?

- Spectator fields during inflation: heavy (m_{heavy} >> H) + light (m_{light} << m_{inf} << H)
- Effective mass of isocurvature pert.

$$m_{eff}^{2} = V_{\perp\perp} - \Gamma_{\perp\perp}^{i} V_{i} + \left(\varepsilon R + 3\eta_{\perp}^{2}\right) H^{2} \qquad \eta_{\perp} = \frac{\phi}{H} \kappa^{-1}$$

- Geometrical destabilisation during inflation in a non-linear sigma model?
- Dangerous even for heavy fields with geodesic trajectories ($\eta_{\perp}=0$) when R < 0 since

$$m_{eff}^{2} = V_{\perp \perp} - \Gamma_{\perp \perp}^{i} V_{i} - \varepsilon \left| R \right| H^{2} < 0 \quad \text{if} \quad \left| R \right| = M_{p} / M \gg 1 \quad \text{[Renaux-Petel, Turzinsky]}$$

• NB: R < 0 generic in supergravity since $K = -3\ln(T + \overline{T}) \longrightarrow R = -8/3$

BUT $m_{eff}^2 > 0$ if computed on attractor background trajectory with $\eta_{\perp} \neq 0$! [MC,Guidetti,Pedro,Vacca]

• Real issue for ultra-light fields with $V_{\perp \perp} = 0$ when R < 0

$$m_{eff}^{2} = -\Gamma_{\perp\perp}^{i} V_{i} - \varepsilon \left| R \right| H^{2} + 3\eta_{\perp}^{2} H^{2}$$

1) Bending trajectory with $\eta_{\perp} \neq 0$ can give $m_{e\!f\!f}^2 > 0$

- 2) Geodesic trajectory with $\eta_{\perp}=0$
 - $m_{e\!f\!f}^2 = -\Gamma_{\perp\perp}^i V_i \mathcal{E} \left| R \right| H^2 < 0 \qquad \text{if} \quad \Gamma_{\perp\perp}^i V_i > 0 \qquad \text{E.g.: } \mathbf{T}_1 \text{ axion in Fibre Inflation}$

Isocurvature pert. grow perturbation theory breaks down

- non-perturbative analysis (numerical)
- Intuition: kick along ultra-light direction and backreaction from $\eta_{\perp} \neq 0$?

See Pedro's talk

Conclusions

- 1) Type IIB Fibre Inflation models: natural inflationary directions
- 2) Moduli stabilisation: non-perturbative + α' effects + string loops + F⁴ terms
- 3) Effective symmetry: non-compact rescalings
- 4) Plateau-like inflation with large tensors: $0.005 \le r \le 0.01$
- 5) Global CY embedding: $h^{1,1} = 3$ case without chirality + chirality for $h^{1,1} \ge 4$
- 6) Compact reduced moduli space with $\Delta \phi/M_p \le c \ln V$ with $\Delta \phi > M_p$ only for K3-fibrations
- 7) General prediction: $r \le 0.01$ \longrightarrow agreement with weak gravity conjecture
- 8) Reheating: visible sector on bulk cycles due to generic $\Delta N_{eff} \neq 0$
- 9) $N_e \approx 52$ and $\Delta N_{eff} \approx 0.6$ \longrightarrow $n_s \approx 0.99$ and $r \approx 0.01$
- 10) Potential rich enough to have a plateau + near inflection point
- 11) Power spectrum enhancement due to ultra slow roll + growing mode
- 12) PBHs in the low-mass region as 100% of DM
- 13) Are ultra-light fields stable during inflation?