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2. the calculation of the matter field Kahler metric which determines
the field normalisation and the re-scaling required to convert the

holomorphic into the physical Yukawa couplings (hard)

3. stabilising the moduli and inserting their values into the
moduli-dependent expressions for the physical Yukawa couplings to
obtain actual numerical values (hard)
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Observable vector bundle V' — X with structure group H C Ej3
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Matter multiplets C? are in 1-to-1 correspondence with harmonic
bundle-valued (0, 1)-forms:

C' < v; € HY(X,V) , harmonic

v =0 5I/V:O

e In this talk, V is a sum of line bundles
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Holomorphic Yukawa couplings are independent of representatives
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This is too hard.. What can we do?
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We want to find harmonic, £-valued forms © on P!. These must be
globally well-defined, hence by demanding the correct transformation
property between the two patches of P! and imposing 07 = 0 and
A(Hv) = 0 we obtain

v =kFP_,_5(2)dz
where P_j_o(Z) is a polynomial of degree —k — 2 in Z. Then

(0,0) :/ f/f[f/:/ |P|?k*dzdz  localises for large |k|
Pl Pl



Plot the integrand |P|?x*

P=1

I




Plot the integrand | P|?k*

I




Plot the integrand | P|?k*




Plot the integrand | P|?k*

I




An Es Model on the Tetraquadric

Consider a generic tetra-quadric hypersurface
X ={p=0} Cc A=P! x P! x P! x P!; affine coordinates 21, 22, 23, 24.

4,68
P2 2 0 2
P2 0 -2
X = V=IL,®Ly®Ls =
P! 2 18120 Ls 1 1 -2
P! | 2 0 0 0



An Es Model on the Tetraquadric

Consider a generic tetra-quadric hypersurface
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The low-energy gauge group is Eg x S(U(1)3). The 27-multiplets carry
U(1) charges.

Cohomology of L; via Koszul sequence 0 — N*®@L — L — L — 0
where N' = 04(2,2,2,2) and L = L| 4

HY(X,L1) ~ HY(A, L) ~ C?

HY (X, L) ~ HY (A, Ly) ~ C?

HY(X,L3) ~ HY (A, L3) ® H*(A, L3 N*) ~C*a C°
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Let us restrict to the three multiplets that correspond to

N 1 N 1
vy = —2dzl 5 Vo = szz
K1 K
N 1 _
W =-—F5dz3 Ndz
K3ky

3

The holomorphic Yukawa coupling takes the value

Next, we need to compute the normalisation of the forms
U1, Uy and D5 defined by 073 = p&.



Normalisation integrals

The normalisation integrals for the above forms localise around the origin
z1 = 29 = 23 = z4 = 0. By a suitable coordinate redefinition on the
embedding projective spaces, the origin can be chosen to be a point

on X.

The normalisation integrals have to be carried out on X, not on A. I'm
skipping a long technical discussion on how the restrictions to X of the
above ambient space harmonic forms are related to forms on X that are
harmonic with respect to the Ricci-flat metric.



Physical Yukawa coupling

1 (05, 5) m (1 . 1 . 5

— (3, 3)~ — | —+ —+ —

VT T i\ Ty 1
With these normalisations, the above holomorphic Yukawa coupling
translates into the following physical Yukawa coupling

457'('3/2 \/ t3
Y (C1,C5,C5) =~ tqt
(G, €2, C5) 3 U2\ Btity + tits + tots




Physical Yukawa coupling

1 (05, 5) m (1 . 1 . 5

— (3, 3)~ — | —+ —+ —

T Ty Tyt
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3 Stito + t1tg + tots

45 3/2 t
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Thank you for listening!



