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Physical Yukawa Couplings

The calculation of physical Yukawa couplings in string theory proceeds in

three steps:

1. the holomorphic Yukawa couplings, that is, the trilinear couplings in

the superpotential have to be determined (easy)

2. the calculation of the matter field Kähler metric which determines

the field normalisation and the re-scaling required to convert the

holomorphic into the physical Yukawa couplings (hard)

3. stabilising the moduli and inserting their values into the

moduli-dependent expressions for the physical Yukawa couplings to

obtain actual numerical values (hard)
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Context:

• Heterotic E8 × E8 string theory on Calabi-Yau threefold X

• Observable vector bundle V → X with structure group H ⊂ E8

• Low-energy gauge group G = CE8
(H)

• Matter multiplets Ci are in 1-to-1 correspondence with harmonic

bundle-valued (0, 1)-forms:

Ci ↔ νi ∈ H1(X,V ) , harmonic

∂̄V ν = 0 ∂̄†V ν = 0

• In this talk, V is a sum of line bundles
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Holomorphic Yukawa Couplings

λijkC
iCjCk ⊂W

λijk =

∫
X

Ω ∧ νi ∧ νj ∧ νk

Holomorphic Yukawa couplings are independent of representatives∫
X

Ω ∧
(
νi + ∂̄ξi

)
∧
(
νj + ∂̄ξj

)
∧
(
νk + ∂̄ξk

)
=

∫
X

Ω ∧ νi ∧ νj ∧ νk ,
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The Matter Field Kähler Metric

GijC
iC̄j ⊂ K

Gij =
1

2V
(νi, νj)

=
1

2V

∫
X

νi ∧ ∗̄V (νj) = − i

4V

∫
X

νi ∧ J ∧ J ∧ (Hν̄j)

Difficulties: Gij depends on

• the Ricci-flat Kähler form J

• the bundle metric H associated with the hermitian Yang-Mills

connection

• harmonic representatives νi

This is too hard.. What can we do?
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Let’s look at something simpler, line bundles on P1.

Let z be an affine coordinate on P1 and L = O(P1, k), with k ≤ −2.

Ĵ =
i

2πκ2
dz ∧ dz̄ , κ = 1 + |z|2

F̂ = −2πikĴ = ∂̄∂ ln Ĥ , Ĥ = κ−k

We want to find harmonic, L-valued forms ν̂ on P1. These must be

globally well-defined, hence by demanding the correct transformation

property between the two patches of P1 and imposing ∂̄ν̂ = 0 and

∂(Ĥν̂) = 0 we obtain

ν̂ = κkP−k−2(z̄)dz̄ ,

where P−k−2(z̄) is a polynomial of degree −k − 2 in z̄. Then

(ν̂, ν̂) =

∫
P1

ν̂Ĥ ¯̂ν =

∫
P1

|P |2κkdz dz̄ localises for large |k|
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We want to find harmonic, L-valued forms ν̂ on P1. These must be

globally well-defined, hence by demanding the correct transformation

property between the two patches of P1 and imposing ∂̄ν̂ = 0 and
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Plot the integrand |P |2κk
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An E6 Model on the Tetraquadric

Consider a generic tetra-quadric hypersurface

X = {p = 0} ⊂ A = P1 × P1 × P1 × P1; affine coordinates z1, z2, z3, z4.

X =

P1

P1

P1

P1


2

2

2

2


4,68

V = L1 ⊕ L2 ⊕ L3 =


−2 0 2

0 −2 2

1 1 −2

0 0 0



The low-energy gauge group is E6 × S(U(1)3). The 27-multiplets carry

U(1) charges.

Cohomology of Li via Koszul sequence 0 → N ∗⊗L → L → L → 0

where N = OA(2, 2, 2, 2) and L = L|A

H1(X,L1) ' H1(A,L1) ' C2

H1(X,L2) ' H1(A,L2) ' C2

H1(X,L3) ' H1(A,L3)⊕H2(A,L3 ⊗N ∗) ' C3 ⊕ C9
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Holomorphic Yukawa Coupling

The only non-trivial Yukawa coupling λ(ν1, ν2, ν3) corresponds to

• ν1 = ν̂1|X , ν̂1 ∈ H1(A,L1)

• ν2 = ν̂2|X , ν̂2 ∈ H1(A,L2)

• ν3 = ν̂3|X , ∂̄ν̂3 = p ω̂ , ω̂ ∈ H2(A,N ∗ ⊗ L3)

We can write the ambient space forms explicitly,

ν̂1 =
1

κ21
(a1 + b1z3)dz̄1 , ν̂2 =

1

κ22
(a2 + b2z3)dz̄2

ω̂ =
1

κ43κ
2
4

(a3 + b3z̄3 + c3z̄
2
3)dz̄3 ∧ dz̄4

λ(ν1, ν2, ν3) =

∫
X

Ω ∧ ν1 ∧ ν2 ∧ ν3 =
1

π

∫
C4

d4z ∧ ν̂1 ∧ ν̂2 ∧ ω̂3

λ(ν1, ν2, ν3) =
(2π)3

3
(2 a1 a2 a3 + 2 b1 b2 c3 + a1 b2 b3 + b1 a2 b3)
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Let us restrict to the three multiplets that correspond to

ν̂1 =
1

κ21
dz̄1 , ν̂2 =

1

κ22
dz̄2

ω̂ =
1

κ43κ
2
4

dz̄3 ∧ dz̄4

The holomorphic Yukawa coupling takes the value
16π3

3
.

Next, we need to compute the normalisation of the forms

ν̂1, ν̂2 and ν̂3 defined by ∂̄ν̂3 = p ω̂.



Normalisation integrals

The normalisation integrals for the above forms localise around the origin

z1 = z2 = z3 = z4 = 0. By a suitable coordinate redefinition on the

embedding projective spaces, the origin can be chosen to be a point

on X.

The normalisation integrals have to be carried out on X, not on A. I’m

skipping a long technical discussion on how the restrictions to X of the

above ambient space harmonic forms are related to forms on X that are

harmonic with respect to the Ricci-flat metric.



Physical Yukawa coupling

1

2V
(ν̂1, ν̂1) ≈ π

4t1
1

2V
(ν̂2, ν̂2) ≈ π

4t2
1

2V
(ν̂3, ν̂3) ≈ π

44

(
1

t1
+

1

t2
+

5

t3

)
With these normalisations, the above holomorphic Yukawa coupling

translates into the following physical Yukawa coupling

Y (C1, C2, C3) ≈ 45π3/2

3
t1t2

√
t3

5t1t2 + t1t3 + t2t3

Thank you for listening!
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