Physical Yukawa Couplings in
 Heterotic String Theory from Localisation

Andrei Constantin (Uppsala University)
String Phenomenology, Warsaw, 4 July 2018
work in collaboration with
Stefan Blesneag, Evgeny Buchbinder, Andre Lukas and Eran Palti

Physical Yukawa Couplings

The calculation of physical Yukawa couplings in string theory proceeds in three steps:

Physical Yukawa Couplings

The calculation of physical Yukawa couplings in string theory proceeds in three steps:

1. the holomorphic Yukawa couplings, that is, the trilinear couplings in the superpotential have to be determined (easy)

Physical Yukawa Couplings

The calculation of physical Yukawa couplings in string theory proceeds in three steps:

1. the holomorphic Yukawa couplings, that is, the trilinear couplings in the superpotential have to be determined (easy)
2. the calculation of the matter field Kähler metric which determines the field normalisation and the re-scaling required to convert the holomorphic into the physical Yukawa couplings (hard)

Physical Yukawa Couplings

The calculation of physical Yukawa couplings in string theory proceeds in three steps:

1. the holomorphic Yukawa couplings, that is, the trilinear couplings in the superpotential have to be determined (easy)
2. the calculation of the matter field Kähler metric which determines the field normalisation and the re-scaling required to convert the holomorphic into the physical Yukawa couplings (hard)
3. stabilising the moduli and inserting their values into the moduli-dependent expressions for the physical Yukawa couplings to obtain actual numerical values (hard)

Context:

- Heterotic $E_{8} \times E_{8}$ string theory on Calabi-Yau threefold X
- Observable vector bundle $V \rightarrow X$ with structure group $H \subset E_{8}$
- Low-energy gauge group $G=\mathcal{C}_{E_{8}}(H)$

Context:

- Heterotic $E_{8} \times E_{8}$ string theory on Calabi-Yau threefold X
- Observable vector bundle $V \rightarrow X$ with structure group $H \subset E_{8}$
- Low-energy gauge group $G=\mathcal{C}_{E_{8}}(H)$
- Matter multiplets C^{i} are in 1-to-1 correspondence with harmonic bundle-valued (0,1)-forms:

$$
\begin{gathered}
C^{i} \leftrightarrow \nu_{i} \in H^{1}(X, V), \text { harmonic } \\
\bar{\partial}_{V} \nu=0 \quad \bar{\partial}_{V}^{\dagger} \nu=0
\end{gathered}
$$

Context:

- Heterotic $E_{8} \times E_{8}$ string theory on Calabi-Yau threefold X
- Observable vector bundle $V \rightarrow X$ with structure group $H \subset E_{8}$
- Low-energy gauge group $G=\mathcal{C}_{E_{8}}(H)$
- Matter multiplets C^{i} are in 1-to-1 correspondence with harmonic bundle-valued (0,1)-forms:

$$
\begin{gathered}
C^{i} \leftrightarrow \nu_{i} \in H^{1}(X, V), \text { harmonic } \\
\bar{\partial}_{V} \nu=0 \quad \bar{\partial}_{V}^{\dagger} \nu=0
\end{gathered}
$$

- In this talk, V is a sum of line bundles

Holomorphic Yukawa Couplings

$$
\begin{gathered}
\lambda_{i j k} C^{i} C^{j} C^{k} \subset W \\
\lambda_{i j k}=\int_{X} \Omega \wedge \nu_{i} \wedge \nu_{j} \wedge \nu_{k}
\end{gathered}
$$

Holomorphic Yukawa Couplings

$$
\begin{gathered}
\lambda_{i j k} C^{i} C^{j} C^{k} \subset W \\
\lambda_{i j k}=\int_{X} \Omega \wedge \nu_{i} \wedge \nu_{j} \wedge \nu_{k}
\end{gathered}
$$

Holomorphic Yukawa couplings are independent of representatives

$$
\int_{X} \Omega \wedge\left(\nu_{i}+\bar{\partial} \xi_{i}\right) \wedge\left(\nu_{j}+\bar{\partial} \xi_{j}\right) \wedge\left(\nu_{k}+\bar{\partial} \xi_{k}\right)=\int_{X} \Omega \wedge \nu_{i} \wedge \nu_{j} \wedge \nu_{k}
$$

The Matter Field Kähler Metric

$$
\begin{aligned}
& G_{i j} C^{i} \bar{C}^{j} \subset K \\
& G_{i j}= \frac{1}{2 \mathcal{V}}\left(\nu_{i}, \nu_{j}\right) \\
&= \frac{1}{2 \mathcal{V}} \int_{X} \nu_{i} \wedge \bar{\star}_{V}\left(\nu_{j}\right)=-\frac{i}{4 \mathcal{V}} \int_{X} \nu_{i} \wedge J \wedge J \wedge\left(H \bar{\nu}_{j}\right)
\end{aligned}
$$

The Matter Field Kähler Metric

$$
\begin{aligned}
& G_{i j} C^{i} \bar{C}^{j} \subset K \\
& G_{i j}= \frac{1}{2 \mathcal{V}}\left(\nu_{i}, \nu_{j}\right) \\
&= \frac{1}{2 \mathcal{V}} \int_{X} \nu_{i} \wedge \bar{\star}_{V}\left(\nu_{j}\right)=-\frac{i}{4 \mathcal{V}} \int_{X} \nu_{i} \wedge J \wedge J \wedge\left(H \bar{\nu}_{j}\right)
\end{aligned}
$$

Difficulties: $G_{i j}$ depends on

- the Ricci-flat Kähler form J
- the bundle metric H associated with the hermitian Yang-Mills connection
- harmonic representatives ν_{i}

The Matter Field Kähler Metric

$$
\begin{aligned}
& G_{i j} C^{i} \bar{C}^{j} \subset K \\
& G_{i j}= \frac{1}{2 \mathcal{V}}\left(\nu_{i}, \nu_{j}\right) \\
&= \frac{1}{2 \mathcal{V}} \int_{X} \nu_{i} \wedge \bar{\star}_{V}\left(\nu_{j}\right)=-\frac{i}{4 \mathcal{V}} \int_{X} \nu_{i} \wedge J \wedge J \wedge\left(H \bar{\nu}_{j}\right)
\end{aligned}
$$

Difficulties: $G_{i j}$ depends on

- the Ricci-flat Kähler form J
- the bundle metric H associated with the hermitian Yang-Mills connection
- harmonic representatives ν_{i}

This is too hard.. What can we do?

Let's look at something simpler, line bundles on \mathbb{P}^{1}.

Let's look at something simpler, line bundles on \mathbb{P}^{1}.
Let z be an affine coordinate on \mathbb{P}^{1} and $\mathcal{L}=\mathcal{O}\left(\mathbb{P}^{1}, k\right)$, with $k \leq-2$.

$$
\begin{aligned}
& \hat{J}=\frac{i}{2 \pi \kappa^{2}} d z \wedge d \bar{z}, \quad \kappa=1+|z|^{2} \\
& \hat{F}=-2 \pi i k \hat{J}=\bar{\partial} \partial \ln \hat{H}, \quad \hat{H}=\kappa^{-k}
\end{aligned}
$$

Let's look at something simpler, line bundles on \mathbb{P}^{1}.
Let z be an affine coordinate on \mathbb{P}^{1} and $\mathcal{L}=\mathcal{O}\left(\mathbb{P}^{1}, k\right)$, with $k \leq-2$.

$$
\begin{aligned}
& \hat{J}=\frac{i}{2 \pi \kappa^{2}} d z \wedge d \bar{z}, \quad \kappa=1+|z|^{2} \\
& \hat{F}=-2 \pi i k \hat{J}=\bar{\partial} \partial \ln \hat{H}, \quad \hat{H}=\kappa^{-k}
\end{aligned}
$$

We want to find harmonic, \mathcal{L}-valued forms $\hat{\nu}$ on \mathbb{P}^{1}. These must be globally well-defined, hence by demanding the correct transformation property between the two patches of \mathbb{P}^{1} and imposing $\bar{\partial} \hat{\nu}=0$ and $\partial(\hat{H} \hat{\nu})=0$ we obtain

$$
\hat{\nu}=\kappa^{k} P_{-k-2}(\bar{z}) d \bar{z},
$$

where $P_{-k-2}(\bar{z})$ is a polynomial of degree $-k-2$ in \bar{z}.

Let's look at something simpler, line bundles on \mathbb{P}^{1}.
Let z be an affine coordinate on \mathbb{P}^{1} and $\mathcal{L}=\mathcal{O}\left(\mathbb{P}^{1}, k\right)$, with $k \leq-2$.

$$
\begin{aligned}
& \hat{J}=\frac{i}{2 \pi \kappa^{2}} d z \wedge d \bar{z}, \quad \kappa=1+|z|^{2} \\
& \hat{F}=-2 \pi i k \hat{J}=\bar{\partial} \partial \ln \hat{H}, \quad \hat{H}=\kappa^{-k}
\end{aligned}
$$

We want to find harmonic, \mathcal{L}-valued forms $\hat{\nu}$ on \mathbb{P}^{1}. These must be globally well-defined, hence by demanding the correct transformation property between the two patches of \mathbb{P}^{1} and imposing $\bar{\partial} \hat{\nu}=0$ and $\partial(\hat{H} \hat{\nu})=0$ we obtain

$$
\hat{\nu}=\kappa^{k} P_{-k-2}(\bar{z}) d \bar{z},
$$

where $P_{-k-2}(\bar{z})$ is a polynomial of degree $-k-2$ in \bar{z}. Then

$$
(\hat{\nu}, \hat{\nu})=\int_{\mathbb{P}^{1}} \hat{\nu} \hat{H} \hat{\hat{\nu}}=\int_{\mathbb{P}^{1}}|P|^{2} \kappa^{k} d z d \bar{z} \quad \text { localises for large }|k|
$$

Plot the integrand $|P|^{2} \kappa^{k}$

$$
P=1 \quad P=\bar{z} \quad P=\bar{z}^{2} \quad P=\bar{z}^{3}
$$

$$
k=-2
$$

Plot the integrand $|P|^{2} \kappa^{k}$

$$
P=1 \quad P=\bar{z} \quad P=\bar{z}^{2} \quad P=\bar{z}^{3}
$$

$k=-2$

Plot the integrand $|P|^{2} \kappa^{k}$

$$
P=1 \quad P=\bar{z} \quad P=\bar{z}^{2} \quad P=\bar{z}^{3}
$$

$k=-2$

$$
k=-4
$$

Plot the integrand $|P|^{2} \kappa^{k}$

$$
P=1 \quad P=\bar{z} \quad P=\bar{z}^{2} \quad P=\bar{z}^{3}
$$

$$
k=-2
$$

$$
k=-4
$$

$k=-5$

An E_{6} Model on the Tetraquadric

Consider a generic tetra-quadric hypersurface $X=\{p=0\} \subset \mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} ;$ affine coordinates $z_{1}, z_{2}, z_{3}, z_{4}$.

$$
X=\begin{aligned}
& \left.\mathbb{P}^{1} \begin{array}{l}
\mathbb{P}^{1} \\
\mathbb{P}^{1} \\
\mathbb{P}^{1}
\end{array}\left[\begin{array}{l}
2,68 \\
2 \\
2
\end{array}\right]^{4,68} \quad V=L_{1} \oplus L_{2} \oplus L_{3}=\left[\begin{array}{rrr}
-2 & 0 & 2 \\
0 & -2 & 2 \\
1 & 1 & -2 \\
0 & 0 & 0
\end{array}\right], ~\right] . ~
\end{aligned}
$$

An E_{6} Model on the Tetraquadric

Consider a generic tetra-quadric hypersurface
$X=\{p=0\} \subset \mathcal{A}=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} ;$ affine coordinates $z_{1}, z_{2}, z_{3}, z_{4}$.

The low-energy gauge group is $E_{6} \times S\left(U(1)^{3}\right)$. The $\mathbf{2 7}$-multiplets carry $U(1)$ charges.

Cohomology of L_{i} via Koszul sequence $0 \rightarrow \mathcal{N}^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where $\mathcal{N}=\mathcal{O}_{\mathcal{A}}(2,2,2,2)$ and $L=\left.\mathcal{L}\right|_{\mathcal{A}}$

$$
\begin{aligned}
& H^{1}\left(X, \mathcal{L}_{1}\right) \simeq H^{1}\left(\mathcal{A}, \mathcal{L}_{1}\right) \simeq \mathbb{C}^{2} \\
& H^{1}\left(X, \mathcal{L}_{2}\right) \simeq H^{1}\left(\mathcal{A}, \mathcal{L}_{2}\right) \simeq \mathbb{C}^{2} \\
& H^{1}\left(X, \mathcal{L}_{3}\right) \simeq H^{1}\left(\mathcal{A}, \mathcal{L}_{3}\right) \oplus H^{2}\left(\mathcal{A}, \mathcal{L}_{3} \otimes \mathcal{N}^{*}\right) \simeq \mathbb{C}^{3} \oplus \mathbb{C}^{9}
\end{aligned}
$$

Holomorphic Yukawa Coupling

The only non-trivial Yukawa coupling $\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ corresponds to

- $\nu_{1}=\left.\hat{\nu}_{1}\right|_{X}, \quad \hat{\nu}_{1} \in H^{1}\left(\mathcal{A}, \mathcal{L}_{1}\right)$
- $\nu_{2}=\left.\hat{\nu}_{2}\right|_{X}, \quad \hat{\nu}_{2} \in H^{1}\left(\mathcal{A}, \mathcal{L}_{2}\right)$
- $\nu_{3}=\left.\hat{\nu}_{3}\right|_{X}, \quad \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}, \quad \hat{\omega} \in H^{2}\left(\mathcal{A}, \mathcal{N}^{*} \otimes \mathcal{L}_{3}\right)$

Holomorphic Yukawa Coupling

The only non-trivial Yukawa coupling $\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ corresponds to

- $\nu_{1}=\left.\hat{\nu}_{1}\right|_{X}, \quad \hat{\nu}_{1} \in H^{1}\left(\mathcal{A}, \mathcal{L}_{1}\right)$
- $\nu_{2}=\left.\hat{\nu}_{2}\right|_{X}, \quad \hat{\nu}_{2} \in H^{1}\left(\mathcal{A}, \mathcal{L}_{2}\right)$
- $\nu_{3}=\left.\hat{\nu}_{3}\right|_{X}, \quad \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}, \quad \hat{\omega} \in H^{2}\left(\mathcal{A}, \mathcal{N}^{*} \otimes \mathcal{L}_{3}\right)$

We can write the ambient space forms explicitly,

$$
\begin{gathered}
\hat{\nu}_{1}=\frac{1}{\kappa_{1}^{2}}\left(a_{1}+b_{1} z_{3}\right) d \bar{z}_{1}, \quad \hat{\nu}_{2}=\frac{1}{\kappa_{2}^{2}}\left(a_{2}+b_{2} z_{3}\right) d \bar{z}_{2} \\
\hat{\omega}=\frac{1}{\kappa_{3}^{4} \kappa_{4}^{2}}\left(a_{3}+b_{3} \bar{z}_{3}+c_{3} \bar{z}_{3}^{2}\right) d \bar{z}_{3} \wedge d \bar{z}_{4} \\
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}=\frac{1}{\pi} \int_{\mathbb{C}^{4}} d^{4} z \wedge \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega}_{3}
\end{gathered}
$$

Holomorphic Yukawa Coupling

The only non-trivial Yukawa coupling $\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ corresponds to

- $\nu_{1}=\left.\hat{\nu}_{1}\right|_{X}, \quad \hat{\nu}_{1} \in H^{1}\left(\mathcal{A}, \mathcal{L}_{1}\right)$
- $\nu_{2}=\left.\hat{\nu}_{2}\right|_{X}, \quad \hat{\nu}_{2} \in H^{1}\left(\mathcal{A}, \mathcal{L}_{2}\right)$
- $\nu_{3}=\left.\hat{\nu}_{3}\right|_{X}, \quad \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}, \quad \hat{\omega} \in H^{2}\left(\mathcal{A}, \mathcal{N}^{*} \otimes \mathcal{L}_{3}\right)$

We can write the ambient space forms explicitly,

$$
\begin{gathered}
\hat{\nu}_{1}=\frac{1}{\kappa_{1}^{2}}\left(a_{1}+b_{1} z_{3}\right) d \bar{z}_{1}, \quad \hat{\nu}_{2}=\frac{1}{\kappa_{2}^{2}}\left(a_{2}+b_{2} z_{3}\right) d \bar{z}_{2} \\
\hat{\omega}=\frac{1}{\kappa_{3}^{4} \kappa_{4}^{2}}\left(a_{3}+b_{3} \bar{z}_{3}+c_{3} \bar{z}_{3}^{2}\right) d \bar{z}_{3} \wedge d \bar{z}_{4} \\
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}=\frac{1}{\pi} \int_{\mathbb{C}^{4}} d^{4} z \wedge \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega}_{3}
\end{gathered}
$$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\frac{(2 \pi)^{3}}{3}\left(2 a_{1} a_{2} a_{3}+2 b_{1} b_{2} c_{3}+a_{1} b_{2} b_{3}+b_{1} a_{2} b_{3}\right)
$$

Let us restrict to the three multiplets that correspond to

$$
\begin{aligned}
& \hat{\nu}_{1}=\frac{1}{\kappa_{1}^{2}} d \bar{z}_{1}, \quad \hat{\nu}_{2}=\frac{1}{\kappa_{2}^{2}} d \bar{z}_{2} \\
& \hat{\omega}=\frac{1}{\kappa_{3}^{4} \kappa_{4}^{2}} d \bar{z}_{3} \wedge d \bar{z}_{4}
\end{aligned}
$$

The holomorphic Yukawa coupling takes the value $\frac{16 \pi^{3}}{3}$.
Next, we need to compute the normalisation of the forms $\hat{\nu}_{1}, \hat{\nu}_{2}$ and $\hat{\nu}_{3}$ defined by $\bar{\partial} \hat{\nu}_{3}=p \hat{\omega}$.

Normalisation integrals

The normalisation integrals for the above forms localise around the origin $z_{1}=z_{2}=z_{3}=z_{4}=0$. By a suitable coordinate redefinition on the embedding projective spaces, the origin can be chosen to be a point on X.

The normalisation integrals have to be carried out on X, not on \mathcal{A}. I'm skipping a long technical discussion on how the restrictions to X of the above ambient space harmonic forms are related to forms on X that are harmonic with respect to the Ricci-flat metric.

Physical Yukawa coupling

$$
\begin{aligned}
& \frac{1}{2 \mathcal{V}}\left(\hat{\nu}_{1}, \hat{\nu}_{1}\right) \approx \frac{\pi}{4 t_{1}} \\
& \frac{1}{2 \mathcal{V}}\left(\hat{\nu}_{2}, \hat{\nu}_{2}\right) \approx \frac{\pi}{4 t_{2}} \\
& \frac{1}{2 \mathcal{V}}\left(\hat{\nu}_{3}, \hat{\nu}_{3}\right) \approx \frac{\pi}{4^{4}}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{5}{t_{3}}\right)
\end{aligned}
$$

With these normalisations, the above holomorphic Yukawa coupling translates into the following physical Yukawa coupling

$$
Y\left(C_{1}, C_{2}, C_{3}\right) \approx \frac{4^{5} \pi^{3 / 2}}{3} t_{1} t_{2} \sqrt{\frac{t_{3}}{5 t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}}}
$$

Physical Yukawa coupling

$$
\begin{aligned}
& \frac{1}{2 \mathcal{V}}\left(\hat{\nu}_{1}, \hat{\nu}_{1}\right) \approx \frac{\pi}{4 t_{1}} \\
& \frac{1}{2 \mathcal{V}}\left(\hat{\nu}_{2}, \hat{\nu}_{2}\right) \approx \frac{\pi}{4 t_{2}} \\
& \frac{1}{2 \mathcal{V}}\left(\hat{\nu}_{3}, \hat{\nu}_{3}\right) \approx \frac{\pi}{4^{4}}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{5}{t_{3}}\right)
\end{aligned}
$$

With these normalisations, the above holomorphic Yukawa coupling translates into the following physical Yukawa coupling

$$
Y\left(C_{1}, C_{2}, C_{3}\right) \approx \frac{4^{5} \pi^{3 / 2}}{3} t_{1} t_{2} \sqrt{\frac{t_{3}}{5 t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}}}
$$

Thank you for listening!

