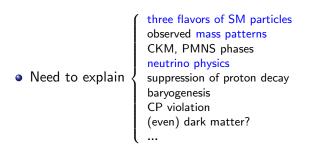
Flavor in MSSM-like heterotic orbifolds

Saúl Ramos-Sánchez UNAM

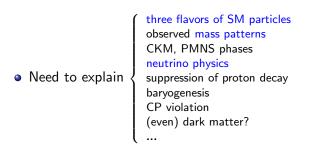
String Phenomenology 2018

July 4, 2018


In collaboration with B. Carballo-Pérez & E. Peinado: arXiv:1607.06812 and with Y. Olguín-Trejo & R. Pérez-Martínez: arxiv:1708.01595 & arxiv:1807.0xxxx

Saúl Ramos-Sánchez – UNAM Flavor in MSSM-like heterotic orbifolds

The need for discrete flavor symmetries


three flavors of SM particles Need to explain
 Need to explain
 CKM, PMNS phases neutrino physics
 suppression of proton decay baryogenesis
 CP violation (even) dark matter?
 ...

The need for discrete flavor symmetries

• There are plenty of non-Abelian discrete symmetries that satisfy basic phenomenological constraints

The need for discrete flavor symmetries

- There are plenty of non-Abelian discrete symmetries that satisfy basic phenomenological constraints
- Problem: Which one is THE right one ??

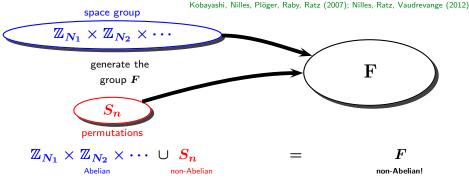
• Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts

• Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts

All geometric properties depend on ${\cal S}$

• Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts

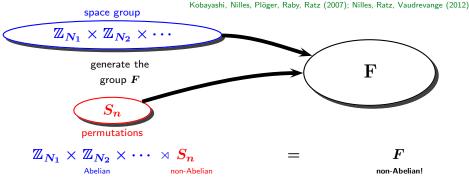
All geometric properties depend on SNon-Abelian flavor symmetry groups F:

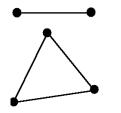

- A: permutation symmetries among fixed points $ightarrow S_n$
- B: discrete charges related to $S \longrightarrow \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$

Kobayashi, Nilles, Plöger, Raby, Ratz (2007); Nilles, Ratz, Vaudrevange (2012)

• Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts

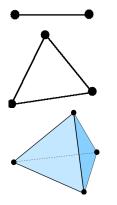
All geometric properties depend on SNon-Abelian flavor symmetry groups F:


- A: permutation symmetries among fixed points $ightarrow S_n$
- B: discrete charges related to $S \longrightarrow \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$


• Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts

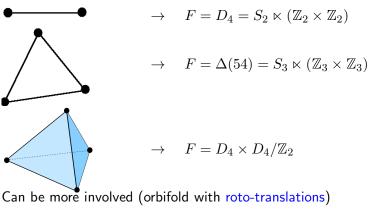
All geometric properties depend on SNon-Abelian flavor symmetry groups F:

- A: permutation symmetries among fixed points $ightarrow S_n$
- B: discrete charges related to $S \longrightarrow \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$



$\bullet \qquad \qquad \rightarrow \quad F = D_4 = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$

$$\rightarrow \quad F = D_4 = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$$


$$\to \quad F = \Delta(54) = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3)$$

$$\rightarrow \quad F = D_4 = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$$

$$\rightarrow \quad F = \Delta(54) = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3)$$

$$\rightarrow \quad F = D_4 \times D_4 / \mathbb{Z}_2$$

$$\rightarrow F = D_4$$

Natural question 1:

Aiming at a guiding principle from an UV complete theory,...

Natural question 1:

Aiming at a guiding principle from an UV complete theory,...

what flavor symmetries are realized in heterotic orbifolds?

Explore all 138 Abelian space groups S already known

Orbifold	Twist	# of	# of affine
label	vector(s)	\mathbb{Z} classes	classes
\mathbb{Z}_3	$\frac{1}{3}(1, 1, -2)$	1	1
\mathbb{Z}_4	$\frac{1}{4}(1, 1, -2)$	3	3
\mathbb{Z}_6 –I	$\frac{1}{6}(1,1,-2)$	2	2
\mathbb{Z}_{6} –II	$\frac{1}{6}(1,2,-3)$	4	4
\mathbb{Z}_7	$\frac{1}{7}(1,2,-3)$	1	1
\mathbb{Z}_8 –I	$\frac{1}{8}(1,2,-3)$	3	3
\mathbb{Z}_8 –II	$\frac{1}{8}(1, 3, -4)$	2	2
\mathbb{Z}_{12} –I	$\frac{1}{12}(1,4,-5)$	2	2
\mathbb{Z}_{12} –II	$\frac{1}{12}(1,5,-6)$	1	1
$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\frac{1}{2}(0,1,-1)$, $\frac{1}{2}(1,0,-1)$	12	35
$\mathbb{Z}_2 \times \mathbb{Z}_4$	$\frac{1}{2}(0,1,-1)$, $\frac{1}{4}(1,0,-1)$	10	41
$\mathbb{Z}_2 imes \mathbb{Z}_6$ –I	$\frac{1}{2}(0,1,-1)$, $\frac{1}{6}(1,0,-1)$	2	4
$\mathbb{Z}_2 \times \mathbb{Z}_6$ –II	$\frac{1}{2}(0,1,-1)$, $\frac{1}{6}(1,1,-2)$	4	4
$\mathbb{Z}_3 imes \mathbb{Z}_3$	$\frac{1}{3}(0,1,-1)$, $\frac{1}{3}(1,0,-1)$	5	15
$\mathbb{Z}_3 \times \mathbb{Z}_6$	$\frac{1}{3}(0,1,-1)$, $\frac{1}{6}(1,0,-1)$	2	4
$\mathbb{Z}_4 \times \mathbb{Z}_4$	$\frac{1}{4}(0,1,-1)$, $\frac{1}{4}(1,0,-1)$	5	15
$\mathbb{Z}_6 \times \mathbb{Z}_6$	$\frac{1}{6}(0,1,-1)$, $\frac{1}{6}(1,0,-1)$	1	1

Fischer, Ratz, Torrado, Vaudrevange (2013)

We find all possible flavor symmetries (without enhancement)

Orbifold	Flavor symmetry	Orbifold	Flavor symmetry
$\mathbb{Z}_2 \times \mathbb{Z}_2$ (1,	1) $(D_4 \times D_4 \times D_4 \times D_4 \times D_4 \times D_4)/\mathbb{Z}_2^4$	$\mathbb{Z}_2 \times \mathbb{Z}_2$ (10,2)	$\mathbb{Z}_2 \times \mathbb{Z}_2$
(1,		(11,1)	$(D_4 \times D_4 \times D_4)/\mathbb{Z}_2$
(1,	$(D_4 \times D_4 \times D_4)/\mathbb{Z}_2$	(12,1)	$(D_4 \times D_4)$
(1,		(12,2)	$\mathbb{Z}_2 \times \mathbb{Z}_2$
(2,	$(D_4 \times D_4 \times D_4 \times D_4 \times D_4)/\mathbb{Z}_2^3$	$\mathbb{Z}_2 \times \mathbb{Z}_4$ (1,1)	$(D_4 \times D_4 \times D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2$
(2,		(1,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(2,	$(D_4 \times D_4 \times D_4)/\mathbb{Z}_2^2$	(1,3)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(2,	1) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(1,4)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(2,	5) $(D_4 \times D_4)$	(1,5)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(2,	5)	(1,6)	$(D_4 \times D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2^2$
(3,	1) $(D_4 \times D_4 \times D_4)/\mathbb{Z}_2$	(2,1)	$(D_4 \times D_4 \times D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_4$
(3,	2) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(2,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(3,	3) $(D_4 \times D_4)/\mathbb{Z}_2$	(2,3)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(3,	1) -	(2,4)	$D_4 imes \mathbb{Z}_4$
(4,	1) $(D_4 \times D_4 \times D_4 \times D_4)/\mathbb{Z}_2^2$	(2,5)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(4,		(2,6)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(5,	1) $(D_4 \times D_4 \times D_4 \times D_4)/\mathbb{Z}_2^2$	(3,1)	$(D_4 \times D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2^2$
(5,	2) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(3,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(5,	$\mathbb{Z}_2 \times \mathbb{Z}_2$	(3,3)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(5,	1) $(D_4 \times D_4)$	(3,4)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(5,		(3,5)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(6,	$(D_4 \times D_4 \times D_4 \times D_4)/\mathbb{Z}_2^2$	(3,6)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(6,	2) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(4,1)	$(D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2$
(6,	3) D ₄	(4,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(7,	$(D_4 \times D_4)$	(4,3)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(7,	2) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(4,4)	$\mathbb{Z}_2 imes \mathbb{Z}_4$
(8,	1) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(4,5)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(9,	1) $(D_4 \times D_4 \times D_4)/\mathbb{Z}_2$	(5,1)	$(D_4 \times D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2^2)$
(9,	2) $\mathbb{Z}_2 \times \mathbb{Z}_2$	(5,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
(9,	$\mathbb{Z}_2 \times \mathbb{Z}_2$	(6,1)	$(D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2$
(10	1) $D_4 \times \mathbb{Z}_2$	(6,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$

SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

Orbifold		Flavor symmetry
$\mathbb{Z}_2 \times \mathbb{Z}_4$	(6,3)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
	(6, 4)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
	(6,5)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
	(7,1)	$D_4 imes \mathbb{Z}_4$
	(7,2)	$\mathbb{Z}_4 \times \mathbb{Z}_2$
	(7,3)	$\mathbb{Z}_4 \times \mathbb{Z}_2$
	(8,1)	$(D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2^2$
	(8,2)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
	(8,3)	$\mathbb{Z}_2 \times \mathbb{Z}_4$
	(9,1)	$(D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2$
	(9,2)	$\mathbb{Z}_4 \times \mathbb{Z}_2$
	(9,3)	$\mathbb{Z}_4 \times \mathbb{Z}_2$
	(10,1)	$\mathbb{Z}_4 \times \mathbb{Z}_2$
	(10,2)	$\mathbb{Z}_4 \times \mathbb{Z}_2$
$\mathbb{Z}_2 \times \mathbb{Z}_6$ -I	(1,1)	$(D_4 \times D_4 \times \mathbb{Z}_6)/\mathbb{Z}_2$
	(1,2)	$\mathbb{Z}_2 \times \mathbb{Z}_6$
	(2,1)	$(D_4 \times D_4 \times \mathbb{Z}_6)/\mathbb{Z}_2$
	(2,2)	$\mathbb{Z}_2 \times \mathbb{Z}_6$
$\mathbb{Z}_2 \times \mathbb{Z}_6$ -II	(1,1)	$\mathbb{Z}_2 \times \mathbb{Z}_6$
	(2,1)	$\mathbb{Z}_2 \times \mathbb{Z}_6$
	(3,1)	$\mathbb{Z}_2 \times \mathbb{Z}_6$
	(4,1)	$\mathbb{Z}_2 \times \mathbb{Z}_6$
$\mathbb{Z}_3 \times \mathbb{Z}_3$	(1,1)	$(\Delta(54) \times \Delta(54) \times \Delta(54))/\mathbb{Z}_3$
	(1,2)	$\mathbb{Z}_3 \times \mathbb{Z}_3$
	(1,3)	$\mathbb{Z}_3 imes \mathbb{Z}_3$
	(1,4)	$\Delta(54) \times \Delta(54)$
	(2,1)	$\Delta(54) \times \Delta(54)$
	(2,2)	$\mathbb{Z}_3 imes \mathbb{Z}_3$
	(2,3)	$\mathbb{Z}_3 \times \mathbb{Z}_3$
	(2,4)	$\Delta(54) \times \Delta(54)$
	(3,1)	$\Delta(54) \times \mathbb{Z}_3$
	(3,2)	$\mathbb{Z}_3 \times \mathbb{Z}_3$
	(3,3)	$\Delta(54) \times \Delta(54)$
	(4,1)	$\Delta(54) \times \Delta(54)$
	(4,2)	$\mathbb{Z}_3 \times \mathbb{Z}_3$
	(4,3)	$\Delta(54) \times \Delta(54)$
	(5,1)	$\mathbb{Z}_3 \times \mathbb{Z}_3$
$\mathbb{Z}_3 \times \mathbb{Z}_6$	(1,1)	$\Delta(54) \times \mathbb{Z}_6$
	(1,2)	$\mathbb{Z}_3 \times \mathbb{Z}_6$

Orbifold		Flavor symmetry
$\mathbb{Z}_3 \times \mathbb{Z}_6$	(2,1)	$\Delta(54) \times \mathbb{Z}_6$
	(2,2)	$\mathbb{Z}_3 \times \mathbb{Z}_6$
$\mathbb{Z}_4 \times \mathbb{Z}_4$	(1,1)	$(D_4 \times D_4 \times D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_4)/\mathbb{Z}_2^3$
	(1,2)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(1,3)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(1, 4)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(2,1)	$(D_4 \times D_4 \times \mathbb{Z}_4^2)/\mathbb{Z}_2^2$
	(2,2)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(2,3)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(2, 4)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(3,1)	$(D_4 \times \mathbb{Z}_4^2)/\mathbb{Z}_2$
	(3,2)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(4,1)	$(D_4 \times D_4 \times \mathbb{Z}_4^2)/\mathbb{Z}_2^2$
	(4,2)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(4,3)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(5,1)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
	(5,2)	$\mathbb{Z}_4 \times \mathbb{Z}_4$
$\mathbb{Z}_6 \times \mathbb{Z}_6$	(1,1)	$\mathbb{Z}_6 \times \mathbb{Z}_6$
Orbifold		Flavor symmetry
\mathbb{Z}_3	(1,1)	$(\Delta(54) \times \Delta(54) \times \Delta(54))/\mathbb{Z}_3^2$
\mathbb{Z}_4	(1,1)	$(D_4 \times D_4 \times D_4 \times D_4 \times \mathbb{Z}_4)/\mathbb{Z}_2^4$
	(2,1)	$(S_4 \times S_2 \times S_2) \ltimes (\mathbb{Z}_4^3 \times \mathbb{Z}_2^3)$
	(3,1)	$(S_4 \times S_4) \ltimes (\mathbb{Z}_4^5 \times \mathbb{Z}_2^2)$
Z6-I	(1,1)	$\Delta(54)$
	(2,1)	$(\Delta(54) \times \mathbb{Z}_6)/\mathbb{Z}_3$
Z6-II	(1,1)	$\Delta(54) \times [D_4 \times D_4/\mathbb{Z}_2]$
	(2,1)	$[\Delta(54) \times \mathbb{Z}_6]/\mathbb{Z}_3 \times [D_4 \times D_4]/\mathbb{Z}_2^2$
	(3,1)	$[\Delta(54) \times \mathbb{Z}_6]/\mathbb{Z}_3 \times [D_4 \times D_4]/\mathbb{Z}_2^2$
	(4,1)	$[\Delta(54) \times \mathbb{Z}_6]/\mathbb{Z}_3 \times [D_4/\mathbb{Z}_2]$
Z 7	(1,1)	$S_7 \ltimes \mathbb{Z}_7^6$
Z8-1	(1,1)	$(D_4 \times D_4 \times \mathbb{Z}_8)/\mathbb{Z}_2^2$
	(2,1)	$(D_4 \times D_4 \times \mathbb{Z}_8)/\mathbb{Z}_2^2$
	(3,1)	$S_4 \ltimes (\mathbb{Z}_8 \times \mathbb{Z}_4^2 \times \mathbb{Z}_2)$
Z8-11	(1,1)	$(D_4 \times D_4 \times D_4 \times \mathbb{Z}_8)/\mathbb{Z}_2^3$
	(2,1)	$(D_4 imes D_4 imes \mathbb{Z}_8)/\mathbb{Z}_2^2$
		$\Delta(54)$
Z ₁₂ -I	(1,1)	
Z ₁₂ -I	(1,1) (2,1)	$(\Delta(54) \times \mathbb{Z}_{12})/\mathbb{Z}_3$

SRS (2017), Olguin-Trejo, Pérez-Martínez, SRS (2018) Flavor in MSSM-like heterotic orbifolds

Saúl Ramos-Sánchez – UNAM

Wilson lines are needed to get MSSM-like models; They break explicitly (the permutations in) flavor symmetries... Wilson lines are needed to get MSSM-like models; They break explicitly (the permutations in) flavor symmetries...

what flavor symmetries *survive* in <u>realistic</u> compactifications?

Orbifolder needed as a tool (Nilles, SRS, Vaudrevange, Wingerter (2011))

Image: State of the Orbifolder - Mozilla Firefox File Edit Yiew Higtory Bookmarks Tools Help State Help				
두 🏭 stringpheno.fisica.unam.mx/orbifolder/orbi.html	☆ ₹ €	<mark>∛] ▼</mark> Google	٩	
🗟 Most Visited 👻 🕲 Getting Started 🛛 Latest Headlines 👻	S Van De Graaff			>
C++ ORBIFOLDER	download compleme	on-line compiled prompt source code entary notes ut contact us Orbifolder		
javascript://		version: 1.2 (#65 29, 2012) platform: linux dependencies: Boost, GSL license: GNU GPL by: Hans Peter Nilles, Saúl Ramos-Sánchez, Patrick K.S. Vaudrevange / Akin Wingerter	8	

Our comprehensive classification of MSSM-like models

		Max # of	# of N	ISSM-lil	ke mod	lels with	î.
Orbi	fold	independent	0	1	2	≥ 3	Total
C.7,897 (1997)	-1	WL		- Factor Mandet			
\mathbb{Z}_3	(1,1)	3	0	0	0	0	0
\mathbb{Z}_4	(1,1)	4	0	0	0	0	0
	(2,1)	3	149	0	0	0	149
	(3,1)	2	27	0	0		27
\mathbb{Z}_{6} -I	(1,1)	1	30	0			30
	(2,1)	1	30	0			30
\mathbb{Z}_{6} -II	(1,1)	3	26	337	0	0	363
	(2,1)	3	14	335	0	0	349
	(3,1)	3	18	335	0	0	353
	(4,1)		44	44 312	0		356
\mathbb{Z}_7	(1,1)	1	1	0			1
\mathbb{Z}_8 -I	(1,1)	2	230	38	0		268
	(2,1)	2	205	41	0		246
	(3,1)	1	389	0			389
\mathbb{Z}_8 -II	(1,1)	3	1,604	398	21	0	2,023
	(2,1)	2	274	231	0		505
\mathbb{Z}_{12} -I	(1,1)	1	556	0			556
	(2,1)	1	555	0			555
\mathbb{Z}_{12} -II	(1,1)	2	279	84	0		363

SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

		Max # of # of MSSM-like models with						
Orbif	old	independent	0	1	2	3	≥ 4	Total
		WL		va	nishing WI	5		
$\mathbb{Z}_2 \times \mathbb{Z}_2$	(1,1)	6	1	152	52	0	0	205
	(2,1)	5	13	342	14	0	0	369
	(3,1)	5	4	400	40	0	0	444
	(5,1)	4	2	40	0	0	0	42
	(6,1)	4	344	57	0	0	0	401
	(7,1)	4	21	55	0	0	0	76
	(9,1)	3	25	2	0	0		27
	(10,1)	3	19	2	0	0		21
	(12,1)	2	3	0	0			3
$\mathbb{Z}_2 \times \mathbb{Z}_4$	(1,1)	4	454	8,637	1,463	26	0	10,580
	(1,6)	2	65	21	0			86
	(2,1)	4	260	4,683	1,131	81	0	6,158
	(2,4)	2	281	47	0			328
	(3,1)	3	13,117	3,637	103	0		16,857
	(4,1)	3	2,911	1,575	33	0		4,519
	(5,1)	3	1,311	742	63	0		2,116
	(6,1)	3	1,814	1,374	58	0		3,246
	(7,1)	3	1,481	1,122	64	0		2,667
	(8,1)	2	839	72	0			911
	(9,1)	2	1,620	522	0			2,142
$\mathbb{Z}_2 \times \mathbb{Z}_6$ -I	(1,1)	2	467	116	0			583
	(2,1)	2	275	78	0			353
$\mathbb{Z}_3 \times \mathbb{Z}_3$	(1,1)	3	40	987	81	0		1,108
	(1,4)	1	8	0				8
	(2,1)	2	1,713	239	0			1,952
	(3,1)	2	6	0	0			6
	(4,1)	2	105	110	0			215
$\mathbb{Z}_3 \times \mathbb{Z}_6$	(1,1)	1	4,469	24				4,493
	(2,1)	1	495	45				540
$\mathbb{Z}_4 \times \mathbb{Z}_4$	(1,1)	3	599	12,091	2,258	5		14,953
	(2,1)	2	2,807	3,220	19			6,046
	(3,1)	2	2,039	875	6			2,920
	(4,1)	2	1,876	1,552	6			3,434
$\mathbb{Z}_6 \times \mathbb{Z}_6$	(1,1)	0	3,412					3,412

SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

Saúl Ramos-Sánchez – UNAM

Flavor in MSSM-like heterotic orbifolds

Orb	ifold	Max. # of		Playor symmetry with ℓ non-v	anishing WLs		Total
Orb	noid	possible WLs	$\ell = 1$	2	3	4	model
\mathbb{Z}_3	(1,1)	3	$\frac{\Delta(54)^2}{0}$	$\Delta(54) \times \mathbb{Z}_3^2$ 0	\mathbb{Z}_3^2 0		0
\mathbb{Z}_4	(1,1)	4	$(D_4^3 imes \mathbb{Z}_4)/\mathbb{Z}_2$	$\begin{array}{c} D_4^2 \times \mathbb{Z}_4 \\ 0 \end{array}$	$\begin{array}{c} D_4\times \mathbb{Z}_4\times \mathbb{Z}_2^2\\ 0\end{array}$	$\mathbb{Z}_4 imes \mathbb{Z}_2^2$	0
(3,1	(2,1)	3	$\begin{array}{c} (S_2 \times S_2) \ltimes (\mathbb{Z}_4^2 \times \mathbb{Z}_2^2) \\ 0 \\ (S_4 \times S_2) \ltimes (\mathbb{Z}_4^3 \times \mathbb{Z}_2^3) \\ 0 \end{array}$	$S_2 \ltimes (\mathbb{Z}_4^2 \times \mathbb{Z}_2^2)$ 0 $S_4 \ltimes (\mathbb{Z}_4^3 \times \mathbb{Z}_2^3)$ 0	$\frac{\mathbb{Z}_4^2 \times \mathbb{Z}_2^2}{149}$		149
	(3,1)	2	$ \begin{array}{c} S_4 \ltimes (\mathbb{Z}_4^4 \times \mathbb{Z}_2) \\ 0 \end{array} $	\mathbb{Z}_4^3 27			27
	(1,1)	1	Z_3^2 30				30
	(2,1)	1	$\mathbb{Z}_6 \times \mathbb{Z}_3$ 30				30
Z6-II	(1,1)	3	$[(D_4 \times D_4)/\mathbb{Z}_2] \times \mathbb{Z}_3^2$ 0 $\Delta(54) \times D_4 \times \mathbb{Z}_2$ 0	$D_4 \times \mathbb{Z}_2 \times \mathbb{Z}_3^2$ 337 $\Delta(54) \times \mathbb{Z}_2^3$ 0	$\frac{\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2^2}{26}$		363
	(2,1)	3	$ \begin{array}{l} \mathbb{Z}_6 \times \mathbb{Z}_3 \times [(D_4 \times D_4)/\mathbb{Z}_2^2] \\ 0 \\ [(\Delta(54) \times \mathbb{Z}_6)/\mathbb{Z}_3] \times D_4 \\ 0 \end{array} $	$\begin{array}{c} D_4 \times \mathbb{Z}_6 \times \mathbb{Z}_3\\ 335\\ [(\Delta(54) \times \mathbb{Z}_6)/\mathbb{Z}_3] \times \mathbb{Z}_2^2\\ 0 \end{array}$	$\frac{\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2^2}{14}$		349
	(3,1)	3	$ \begin{array}{l} \mathbb{Z}_6 \times \mathbb{Z}_3 \times [(D_4 \times D_4)/\mathbb{Z}_2^2] \\ 0 \\ [(\Delta(54) \times \mathbb{Z}_6)/\mathbb{Z}_3] \times D_4 \\ 0 \end{array} $	$ \begin{array}{c} D_4 \times \mathbb{Z}_6 \times \mathbb{Z}_3 \\ 333 \\ [(\Delta(54) \times \mathbb{Z}_6)/\mathbb{Z}_3] \times \mathbb{Z}_2^2 \\ 2 \end{array} $	$\frac{\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2^2}{18}$		353
	(4,1)	2	$[(\Delta(54) \times \mathbb{Z}_6)/\mathbb{Z}_3] \times \mathbb{Z}_2$ 0 $[D_4/\mathbb{Z}_2] \times \mathbb{Z}_6 \times \mathbb{Z}_3$ 312	$\frac{\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2}{44}$			356

SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

Orbit	Fold	Max. # of		Flavor symmetry with ℓ	non-vanishing WLs		Total
Orbit	loid	possible WLs	$\ell = 1$	2	3	4	models
\mathbb{Z}_7	(1,1)	1	\mathbb{Z}_{7}^{2} 1				1
\mathbb{Z}_8 -I	(1,1)	2	$D_4 \times \mathbb{Z}_8$ 38	$\mathbb{Z}_8 \times \mathbb{Z}_2^2$ 230			268
	(2,1)	2	$D_4 \times \mathbb{Z}_8$ 41	$\mathbb{Z}_8 \times \mathbb{Z}_2^2$ 204			246
	(3, 1)	1	$\mathbb{Z}_8 \times \mathbb{Z}_4$ 389				389
\mathbb{Z}_8 -II	(1,1)	3	$(D_4 \times D_4 \times \mathbb{Z}_8)/\mathbb{Z}_2$ 21	$D_4 \times \mathbb{Z}_8 \times \mathbb{Z}_2$ 398	$Z_8 \times Z_2^3$ 1,604		2,023
	(2,1)	2	$D_4 \times \mathbb{Z}_8$ 231	$\mathbb{Z}_8 \times \mathbb{Z}_2^2$ 274			505
\mathbb{Z}_{12} -I	(1,1)	1	$\mathbb{Z}_3 \times \mathbb{Z}_3$ 556				556
	(2,1)	1	$\mathbb{Z}_{12} \times \mathbb{Z}_3$ 555				555
$\mathbb{Z}_{12}\text{-}\mathrm{II}$	(1,1)	2	$D_4 \times \mathbb{Z}_2$ 84	\mathbb{Z}_{2}^{3} 279			363

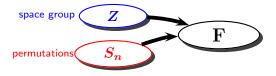
SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

6,563 \mathbb{Z}_N heterotic orbifolds with MSSM-like properties

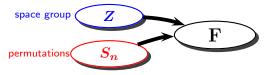
		Max. # of	Max. #ℓ of		Flavor symmetry with ℓ of non-vanishing WLs						
Orbife	old	possible WLs	flavor symmetry	WLs affecting the flavor symmetry	$\ell = 1$	2	3	4	5	6	Total
$\mathbb{Z}_2 \times \mathbb{Z}_2$	(1,1)	6	6	D_4^5/\mathbb{Z}_2^2 0	D_4^4 0	$D_4^3 \times \mathbb{Z}_2^2$ 0	$D_4^2 \times \mathbb{Z}_2^4$ 52	$D_4 \times \mathbb{Z}_2^6$ 152	Z_{2}^{8} 1	205	
	(1,3)	4	2	$D_4^2 \times \mathbb{Z}_2$ 0	$D_4 \times \mathbb{Z}_2^3$ 0					0	
	(2,1)	5	5	D_4^4/\mathbb{Z}_2 0	$D_4^3 \times \mathbb{Z}_2$ 0	$D_4^2 \times \mathbb{Z}_2^3$ 14	$D_4 \times \mathbb{Z}_2^5$ 342	Z ₂ 13		369	
	(2,3)	3	1	$\begin{array}{c} D_4^2 \\ 0 \end{array}$						0	
	(2,5)	3	1	$D_4 \times \mathbb{Z}_2^2$ 0						0	
	(3,1)	5	3	$D_4^2 \times \mathbb{Z}_2$ 0	$D_4 \times \mathbb{Z}_2^3$ 432	\mathbb{Z}_{2}^{5} 12				444	
	(3,3)	3	1	$D_4 \times \mathbb{Z}_2$ 0						0	
	(4,1)	4	4	$\begin{array}{c} D_4^3 \\ 0 \end{array}$	$D_4^2 \times \mathbb{Z}_2^2$ 0	$D_4 \times \mathbb{Z}_2^4$ 0	Z_{2}^{6} 0			0	
	(5,1)	4	4	$ \begin{array}{c} D_4^3 \\ 0 \end{array} $	$D_4^2 \times \mathbb{Z}_2^2$ 0	$D_4 \times \mathbb{Z}_2^4$ 40	$\frac{Z_{2}^{6}}{2}$			42	
	(5,4)	2	1	$D_4 \times \mathbb{Z}_2^2$ 0						0	
	(6,1)	4	4	D_4^3 0	$D_4^2 \times \mathbb{Z}_2^2$ 0	$D_4 \times \mathbb{Z}_2^4$ 57	\mathbb{Z}_{2}^{6} 344			401	
	(6,3)	2	0							0	
	(7,1)	4	2	$D_4 \times \mathbb{Z}_2^2$ 0	\mathbb{Z}_{2}^{4} 76					76	
	(9,1)	3	3	$D_4^2 \times \mathbb{Z}_2$ 0	$D_4 \times \mathbb{Z}_2^3$ 2	Z ⁵ 25				27	
	(10,1)	3	1	Z_2^3 21						21	
	(11,1)	3	3	$\begin{array}{c} D_4^2 \times \mathbb{Z}_2 \\ 0 \end{array}$	$D_4 \times \mathbb{Z}_2^3$	Z_{2}^{5} 0				0	

SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

01211		Max. # of		Flavor symmetry with ℓ of non-vanishing WLs						
Orbifold		possible WLs	WLs affecting the flavor symmetry	$\ell = 1$	2	3	4	5	6	Total
	(12,1)	2	2	$D_4 \times \mathbb{Z}_2^2$ 0	\mathbb{Z}_{2}^{4} 3					3
$\mathbb{Z}_2 \times \mathbb{Z}_4$	(1,1)	4	4	$(D_4^3 \times \mathbb{Z}_4)/\mathbb{Z}_2$ 26	1.463	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2^3$ 8,637	$\mathbb{Z}_4 \times \mathbb{Z}_2^5$ 454			10,58
	(1,6)	2	2	$D_4^2 \times \mathbb{Z}_4$ 21	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2^2$ 65					86
	(2,1)	4	4	$(D_4^3 \times \mathbb{Z}_4)/\mathbb{Z}_2$ 81	$D_4^2 \times \mathbb{Z}_4 \times \mathbb{Z}_2$ 1,131	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2^3$ 4,686	$\mathbb{Z}_4 \times \mathbb{Z}_2^5$ 260			6,158
	(2,4)	2	1	$\mathbb{Z}_4 \times \mathbb{Z}_2$ 321						328
	(3,1)	3	3	$(D_4^2 \times \mathbb{Z}_4)$ 103	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2^2$ 3,637	$\mathbb{Z}_4 \times \mathbb{Z}_2^4$ 13,117				16,85
	(4,1)	3	2	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2$ 1,308	$Z_4 \times Z_2^2$ 3,187					4,519
	(5,1)	3	3	$D_4^2 \times \mathbb{Z}_4$ 63	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2^2$ 742	$\mathbb{Z}_4 \times \mathbb{Z}_2^4$ 1,311				2,116
	(6,1)	3	2	$ \begin{array}{c} D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \\ 884 \end{array} $	$\mathbb{Z}_4 \times \mathbb{Z}_2^3$ 2,325					3,246
	(7,1)	3	1	$\mathbb{Z}_4 \times \mathbb{Z}_2^2$ 2,229						2,665
	(8,1)	2	2	$ \begin{array}{c} D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \\ 72 \end{array} $	$\mathbb{Z}_4 \times \mathbb{Z}_2^2$ 839					911
	(9,1)	2	2	$D_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2$ 522	$\mathbb{Z}_4 \times \mathbb{Z}_2^2$ 1,620					2,142
$\mathbb{Z}_2 \times \mathbb{Z}_6$ -I	(1,1)	2	2	$\begin{array}{c} D_4 \times \mathbb{Z}_2 \times \mathbb{Z}_6 \\ 467 \end{array}$	$\mathbb{Z}_2^3 \times \mathbb{Z}_6$ 116					583
	(2,1)	2	2	$\begin{array}{c} D_4 \times \mathbb{Z}_2 \times \mathbb{Z}_6\\ 275 \end{array}$	$\mathbb{Z}_2^3 \times \mathbb{Z}_6$ 78					353
$\mathbb{Z}_3 \times \mathbb{Z}_3$	(1,1)	3	3	$\Delta(54)^2 \times \mathbb{Z}_3$ 81	$\Delta(54) \times \mathbb{Z}_3^3$ 987	Z ⁵ 40				1,108
	(1,4)	1	1	Z ⁴ 8						8
	(2,1)	2	2	$\Delta(54) \times \mathbb{Z}_3^2$ 239	\mathbb{Z}_{3}^{4} 1,713					1,952
	(3,1)	2	1	Z ₃ 6						6

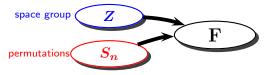

SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

		Max. # of	Max. $\# \ell$ of		Flavor symn	netry with ℓ o	f non-vanishin	g WLs		
Orbife	old	possible WLs	WLs affecting the flavor symmetry	$\ell = 1$	2	3	4	5	6	Total
	(4,1)	2	1	\mathbb{Z}_{3}^{4} 127						215
$\mathbb{Z}_3\times\mathbb{Z}_6$	(1,1)	1	1	$\mathbb{Z}_{3}^{2} \times \mathbb{Z}_{6}$ 4,469						4,493
	(2,1)	1	1	$\mathbb{Z}_3^2 \times \mathbb{Z}_6$ 495						540
$\mathbb{Z}_4 \times \mathbb{Z}_4$	(1,1)	3	3	$(D_4^2 \times \mathbb{Z}_4^2)/\mathbb{Z}_2$ 2,258	$D_4 \times \mathbb{Z}_4^2 \times \mathbb{Z}_2$ 12,091	$\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2}^{3}$ 599				14,953
	(2,1)	2	2	$D_4 \times \mathbb{Z}_4^2$ 3,220	$\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2}^{2}$ 2,807					6,046
	(3,1)	2	1	$\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2}$ 2,914						2,920
	(4,1)	2	1	$D_4 \times \mathbb{Z}_4^2$ 1,552	$\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2}^{2}$ 1,876					3,434


SRS (2017), Olguín-Trejo, Pérez-Martínez, SRS (2018)

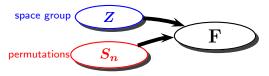
87,809 $\mathbb{Z}_N \times \mathbb{Z}_M$ heterotic orbifolds with MSSM-like properties

• Flavor symmetries from compactification geometry: Kobayashi, Nilles, Plöger, Raby, Ratz (2007)


• Flavor symmetries from compactification geometry: Kobayāshi, Nilles, Plöger, Raby, Ratz (2007)

• Full classification of flavor symmetries in Abelian orbifolds

• Flavor symmetries from compactification geometry:


Kobayashi,Nilles,Plöger,Raby,Ratz (2007)

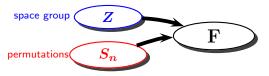
- Full classification of flavor symmetries in Abelian orbifolds
- Full "classification" of Abelian heterotic orbifolds with $\sim 94,000$ nice models

• Flavor symmetries from compactification geometry:

Kobayashi,Nilles,Plöger,Raby,Ratz (2007)

- Full classification of flavor symmetries in Abelian orbifolds
- Full "classification" of Abelian heterotic orbifolds with $\sim 94,000$ nice models
- Full "classification" of flavor symmetries in MSSM from strings

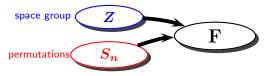
Flavor symmetries from compactification geometry;


Kobayashi,Nilles,Plöger,Raby,Ratz (2007)

- Full classification of flavor symmetries in Abelian orbifolds
- Full "classification" of Abelian heterotic orbifolds with $\sim 94,000$ nice models
- Full "classification" of flavor symmetries in MSSM from strings
- 50% of them exhibit D_4 flavor symmetry $\rightarrow 2+1$ families

Flavor symmetries from compactification geometry;

Kobayashi,Nilles,Plöger,Raby,Ratz (2007)



- Full classification of flavor symmetries in Abelian orbifolds
- Full "classification" of Abelian heterotic orbifolds with $\sim 94,000$ nice models
- Full "classification" of flavor symmetries in MSSM from strings
- 50% of them exhibit D_4 flavor symmetry $\rightarrow 2+1$ families
- 5% of them enjoy $\Delta(54) \rightarrow 3$ "identical" families

[Hans-Peter]

• Flavor symmetries from compactification geometry:

Kobayashi,Nilles,Plöger,Raby,Ratz (2007)

- Full classification of flavor symmetries in Abelian orbifolds
- Full "classification" of Abelian heterotic orbifolds with $\sim 94,000$ nice models
- Full "classification" of flavor symmetries in MSSM from strings
- 50% of them exhibit D_4 flavor symmetry ightarrow 2+1 families
- 5% of them enjoy $\Delta(54) \rightarrow 3$ "identical" families

[Hans-Peter]

• 45% only Abelian flavor symmetries (!!)

Flavor symmetries from compactification geometry;

Kobayashi,Nilles,Plöger,Raby,Ratz (2007)

- Full classification of flavor symmetries in Abelian orbifolds
- \bullet Full "classification" of Abelian heterotic orbifolds with $\sim 94,000$ nice To do
- Full "classification"
- 50% of them exhibit
- 5% of them enjoy Δ
- 45% only Abelian fla

- compare with other classifying tools
- identify common properties
- study phenomenology
- symmetry enhancement?
- are there predictions?

eter]

An ad that should not be missed

Saúl Ramos-Sánchez – UNAM Flavor in MSSM-like heterotic orbifolds