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Some questions

Does consistency of the standard model make any demands on
the topology of spacetime?
Should we (can we) consider any manifolds beyond those with
Spin structure?
When is a (discrete or continuous) symmetry anomaly-free on
any manifold?
Is any global form for the gauge group of the standard model
inconsistent on some spacetimes? (SU(3)× SU(2)× U(1) vs.
SU(3)× U(2) vs. U(3)× SU(2) vs.
(SU(3)× SU(2)× U(1))/Z6)
Whence the 8d/9d swampland? [Vafa ’05] I.e. why are there so
few susy vacua in 9d and 8d coming from string theory?

I will try to explain how to formulate these questions precisely, and
partially answer the last question. (Miguel will answer the rest of
the questions.)
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Why these questions

The common thread in all these topics is that we are trying to
study whether the theory makes sense on arbitrary manifolds.
Recent developments [Dai, Freed ’94], [Witten ’15] have shed new light
on this old topic.

Most recent developments are geared towards condensed matter, but we
will try to argue that there are also interesting consequences for high
energy physics and string model building, which we have only begun to
explore.

In fact, to my knowledge the constraints I present are best motivated
when thinking about quantum gravity: we expect that quantum gravity
fluctuations can freely change the topology of spacetime, so imposing
consistency of a quantum theory on manifolds of arbitrary topology
seems very natural!
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Review of anomalies (I)

Consider a (Lagrangian) theory T with some global symmetry G.
We can introduce a background connection AG for G, and
compute the path integral

Z(AG) =

∫
[Dψ]e−S(AG,ψ) (1)

where ψ are some fundamental fields. (Only the fermionic fields,
and the connection they couple to, matter for my discussion.)

Denote byM the space of all AG. We have an anomaly whenever
Z(AG) is not well defined as a function on the manifoldM/G:

Non-invariance under small loops (curvature) inM/G: local
anomaly.
Non-invariance under parallel transport for non-trivial loops in
M/G: global anomalies.



A note on terminology

“Global anomalies” is also sometimes used in the literature to mean
“local anomalies (2.) of global symmetries (1.)”.

Unfortunately, in the literature the word “global” is used in three
different ways:
1. Local (gauge) vs. global symmetry.
2. Local vs. global anomalies (statement about connection space;

perturbative vs. non-perturbative computations).
3. Local vs. global features on spacetime. (I.e. whether the

topology of spacetime matters.)

I will be discussing global anomalies (2.) for local (gauge)
symmetries (1.) that may or may not depend on the topology of
spacetime (3.).
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Review of anomalies (II)

In general, Z(AG) is a section of some bundle overM/G. If the
bundle is non-trivial the theory is still consistent; we say that we
have a ’t Hooft anomaly, which may be local or global.

For
example, the SU(4)R symmetry of N = 4 SU(N) SYM has such
an anomaly in 4d (Tr(F 3

R) 6= 0), but the theory is fine, and the
symmetry is unbroken.

What an anomaly means is that the symmetry G cannot be
gauged, since gauging involves integration of Z(AG) overM/G.

We will consider the case in which there are no local anomalies.
How do we detect a possible global anomaly?
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The Dai-Freed viewpoint on anomalies

Consider the case that your space-time Xd is the boundary of some
manifold Yd+1, over which all the relevant structures on Xd extend.

We define the path integral of a fermion ψ on Xd as [Dai, Freed ’04]

Zψ = |Zψ|e−2πi η(DYd+1
) (2)

with

η(DYd+1
) =

dim kerDYd+1
+
∑
λ6=0 sign(λ)

2
. (3)

[*] For the experts, this is the same η that appears in the APS index theorem.
More on this soon.



Why is this prescription useful
The η invariant is, in general, very difficult to compute. We only
know expressions for it in a handful of examples.

Nevertheless, it has very nice properties: if we change the
orientation of the manifold the phase of the partition function
changes sign:

e2πi η(DA) = e−2πiDA (4)

and it is “local”, in the sense that η behaves nicely under gluing:

e2πiη(DA)e2πi η(DB) = e2πi η(DA+B) (5)
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The Dai-Freed viewpoint on anomalies
Anomalies, in this language, come from situations in which the
phase of the partition function depends on the choice of Yd+1:

e−2πi η(DYd+1
) 6= e

−2πi η(DY ′
d+1

)
(6)

even if ∂Yd+1 = ∂Y ′d+1 = Xd.

Gluing Yd+1 and Y d+1 over Xd to form the closed manifold Wd+1,
we find that the partition function is well defined as a function of
the fields on Xd only if on every such Wd+1

e−2πi η(DWd+1
) = e−2πi η(DYd+1

)/e
−2πi η(DY ′

d+1
)

= 1 (7)
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The APS index theorem
Given that η is so hard to compute, computing η for all Wd+1

seems hopeless. . .

But η has another beautiful property: it can be
computed by the Atiyah-Patodi-Singer index theorem whenever
there is a manifold Zd+2 such that δZd+2 = Wd+1:

ind( /DZd+2
) = η(DWd+1

) +

∫
Zd+2

Â(R) ch(F ) . (8)

Since the index is an integer, this leads to

exp(−2πi η(DWd+1
)) = exp

(
2πi

∫
Zd+2

Â(R) ch(F )

)
. (9)

The expression on the right hand side is the local anomaly
polynomial, so in the absence of local anomalies (easily checked, I’ll
assume it from now on) we have that

exp(2πi η(DWd+1
)) = 1 (10)

whenever Wd+1 is a boundary.
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Anomalies and bordism
What this means is that if we have some manifold Zd+2 such that

∂Zd+2 = W
(1)
d+1 −W

(2)
d+1 (11)

then
exp(2πi η(D

W
(1)
d+1

)) = exp(2πi η(D
W

(2)
d+1

)) (12)

This is a huge simplification! For the purposes of anomalies any
two manifolds which can be connected via a third manifold are then
equivalent: W (1)

d+1 ∼W
(2)
d+1

This equivalence relation is known as bordism, and the resulting
equivalence class of manifolds is denoted Ωd+1.
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Some basic properties of bordism and η
The equivalence class Ωd+1 is an abelian group, under disjoint
union of manifolds:

We have that

e2πiη(DA)e2πi η(DB) = e2πi η(DA+B) (13)

so the global anomaly is a homomorphism

eeπiη : Ωd+1 → U(1) (14)

So, for example, if Ωd+1 = 0, the anomaly necessarily vanishes.
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Decorating bordism
In our applications we want to impose some extra structure on the
manifolds. For instance, if they must all carry a Spin structure the
bordism group is denoted by ΩSpin

d+1 .

We are interested in gauge theories. That is, in understanding the
partition function as a function of a principal bundle EG on the
manifold, for some group G. In this formalism this is encoded in
decorating the manifolds with maps Wd+1 → BG, with BG the
“classifying space of G”. Some examples

G BG

Z2 RP∞
Zn S∞/Zn
U(1) CP∞

In general, bordism groups of Spin manifolds Wd+1 decorated with
a map toM are denoted by

ΩSpin
d+1 (M) . (15)
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The strategy

The beauty of the Dai-Freed approach is that we can formulate
necessary and sufficient conditions for quantum consistency on any
manifold Xd for a theory with group G:

Construct all the bordism groups in one dimension higher with
the right structure. For instance ΩSpin

d+1 (BG).

The theory is anomaly free iff the e2πi η homomorphism gives 1
for every equivalence class in ΩSpin

d+1 (BG).

As mentioned before, a particularly important case is
ΩSpin
d+1 (BG) = 0. In this case the theory is automatically anomaly

free!

Otherwise, we need to find some generators of ΩSpin
d+1 (BG) on

which we can compute η. Not an easy task!
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How to compute ΩSpin
∗ (BG)

In many useful ways, one can think of ΩSpin
∗ (M) as a “generalized

homology theory”
ΩSpin
∗ (M) ∼= H∗(M) . (16)

This H behaves like ordinary homology, except for:

Hk(pt) 6= 0 for k > 0 . (17)

If we have a fibration 0→ F → E → B → 0, then for an ordinary
homology we can “assemble” H∗(E) starting from∑

p+q=k

Hp(B,Hq(F ))⇒ Hk(E) (18)

This is known as a spectral sequence.
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How to compute ΩSpin
∗ (BG)

A similar idea works for any generalized homology (this is known as
the Atiyah-Hirzebruch spectral sequence)∑

p+q=k

Hp(B,Hq(F ))⇒ Hk(E) (19)

Now, any space X fits in a fibration 0→ pt→ X → X → 0, so∑
p+q=k

Hp(X,Hq(pt))⇒ Hk(X) (20)

For us X = BG and H = ΩSpin so this gives a way of seeing how
adding bundles modifies ordinary bordism ΩSpin

k
∼= ΩSpin

k (pt)



Result of the computation for some Lie groups
G

ΩSpin
k (BG)

0 1 2 3 4 5 6 7 8
SU(2) Z Z2 Z2 0 2Z Z2 Z2 0 4Z

SU(n > 2) Z Z2 Z2 0 2Z 0 – – –
USp(2k > 2) Z Z2 Z2 0 2Z Z2 Z2 0 5Z

U(1) Z Z2 Z2 ⊕ Z 0 Z⊕ Z 0 – – –
Spin(n ≥ 8) Z Z2 Z2 0 2Z 0 – – –
SO(n ≥ 3) Z Z2 e(Z2,Z2) 0 e(Z,Z⊕ Z2) 0 – – –
E6, E7, E8 Z Z2 Z2 0 2Z 0 0 0 2Z

G2 Z Z2 Z2 0 2Z 0 – – –
F4 Z Z2 Z2 0 2Z 0 0 0 –

The global form matters: ΩSpin
k (BSO(n)) 6= ΩSpin

k (BSpin(n)).

For d = 4 we have ΩSpin
d+1 (BG) = 0 for all cases we checked, except

the symplectic groups (which have Witten’s Z2 anomaly
[Witten ’82]).

The computation gets harder as we increase the dimension: at high
dimensions one cannot always read the answer in this way.
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The 8d string swampland

One original motivation for looking at global anomalies is the
8d/9d swampland [Vafa ’05]: in d ∈ {9, 8, 7} supersymmetry implies
that the fermions are in the adjoint representation, which is real, so these
theories have no local anomalies.

On the other hand in these dimensions the minimal amount of
supersymmetry is 16 supercharges, and the set of known string
compactifications preserving so much susy is very limited.

So there is a very wide gap between what we seem to be able to do in
field theory (anything goes), and what we can do in string theory (a
handful of choices).

How much of this gap is anomalies, and how much subtle quantum
gravity effects?
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String compactifications down to 9d
There are four known components of the N = 1 moduli space one
can construct this way (for a detailed analysis see [Aharony,
Komargodski, Patir ’07])

Rank 2 (a):

M-theory on the Klein bottle.

Rank 2 (b):

IIA with O8+ and O8−.

Rank 10:

M-theory on Möbius band.
CHL string. [Chaudhury, Hockney, Lykken ’95]

Rank 18:

M-theory on the cylinder.
Heterotic on S1.
IIA with two O8− planes and 16 D8s.



String compactifications down to 8d

We obtain three possible N = 1 8d theories by putting the previous
N = 1 theories on an S1. The resulting theories are neatly
described in IIB language (on T 2/(IΩ(−1)FL)):

Rank 4: IIB with two O7− and two O7+.
Rank 12: IIB with three O7−, one O7+ and 8 D7s.
Rank 20: IIB with four O7− and 16 D7s.

All these cases can also be described in F-theory, possibly with
frozen singularities. (For a detailed discussion of the moduli spaces
and dual pictures, see [de Boer, Dijkgraaf, Hori, Keurentjes, Morgan,
Morrison, Sethi ’01] and [Taylor ’11].)



Non-abelian enhancements

N = 1 theories in 8d have a complex scalar in the vector multiplet.
Giving a generic vev to these scalars costs no energy, and breaks
the gauge algebra to u(1)rk. The set of all vacua accessed in this
way is the Coulomb branch.

At certain points in the Coulomb branch there can be non-abelian
enhancements. The enhancements in the known backgrounds are
to su(N), so(2N), sp(N), e6, e7, e8.

We would like to explain why the other algebras

so(2N + 1) ; f4 and g2

do not appear.
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Computing global anomalies in 8d
[I.G.-E., Hayashi, Ohmori, Tachikawa, Yonekura ’17]

Ideally, we would
Construct all the bordism groups ΩSpin

9 (BG).
Compute the e2πi η homomorphism.

This is hard. We did the following instead:
Choose X8 = S4 × R4, and put an appropriate G bundle on
S4.
See if the effective theory on R4 after reduction has a global
(Witten) anomaly. (η(A×B) = ind(A) · η(B))

The resulting conditions are (in principle) weaker, but still
illuminating!
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Example: so(2N + 1) with N > 2

Up to discrete factors, any global form of this algebra has a
subgroup

SU(2)× SU(2)′ × SO(2N − 3) . (21)

We put the instanton on SU(2), so the unbroken group in 4d is
H = SU(2)′ × SO(2N − 3).

The adjoint of so(2N + 1) decomposes as

2SU(2) ⊗ 2SU(2)′ ⊗ (2N− 3)SO(2N−3)

⊕Adj(SU(2)× SU(2)′ × SO(2N − 3))
(22)

The resulting representation in four dimensions of H is

rH = 2SU(2)′ ⊗ (2N− 3)SO(2N−3) + (H singlets). (23)

which manifestly has a global anomaly.



Example: so(2N + 1) with N > 2

Up to discrete factors, any global form of this algebra has a
subgroup

SU(2)× SU(2)′ × SO(2N − 3) . (21)

We put the instanton on SU(2), so the unbroken group in 4d is
H = SU(2)′ × SO(2N − 3).

The adjoint of so(2N + 1) decomposes as

2SU(2) ⊗ 2SU(2)′ ⊗ (2N− 3)SO(2N−3)

⊕Adj(SU(2)× SU(2)′ × SO(2N − 3))
(22)

The resulting representation in four dimensions of H is

rH = 2SU(2)′ ⊗ (2N− 3)SO(2N−3) + (H singlets). (23)

which manifestly has a global anomaly.



Summary of results

We find that 8d N = 1 theories with algebra f4 and so(2N + 1) for
N ≥ 3 do not exist quantum mechanically, due to an anomaly.

We find no anomaly for su(N), so(2N), e6, e7, e8 and g2.

We find no ordinary global anomaly for sp(N) (associated to S8),
but there is an anomaly on S4 × R4.

The d = 8 N = 1 sp(N) theories are inconsistent.
But perhaps this inconsistency can be cured by coupling to a
TQFT (the topological Green-Schwarz mechanism). We
conjecture that this is what happens on the worldvolume of an
O7+.
The needed TQFT is necessarily somewhat involved (it should
involve K-theory instead of cohomology), and we have not
been able to construct it.



Conclusions

The Dai-Freed viewpoint provides a mathematically precise
formulation of what it means for a theory to be anomaly-free, and
fits well with intuition from quantum gravity.

I expect that there will be interesting applications to our
understanding of the 8d/9d swampland, beyond the results in
[I.G.-E., Hayashi, Ohmori, Tachikawa, Yonekura ’17].

With Miguel, we have been looking instead to applications of these ideas
to 4d theories, and more specifically to the Standard Model.
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Supplementary material



A new anomaly for sp(2N)

Consider the decomposition USp(2N) ⊃ USp(2)× USp(2N − 2).
The adjoint decomposes as

Adj→ (2⊗ (2N− 2))⊕ (Adj⊗ 1)⊕ (1⊕ Adj) .

so the effective USp(2N − 2) theory in R4 has fermions in the
representation

rH = ⊕ (singlets) . (24)

So there is a Witten anomaly!
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