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Motivation: connection of string theory to pheno.
(cosmology, particle physics, gravitational waves)
Context: string compactifications: 10d — 4d

1. Find a 10d string background:
4d space-time (de Sitter, Minkowski) x6d compact manifold M

Here: classical (perturbative) backgrounds:
solutions of 10d type ITA/B supergravities with
D,-branes/orientifolds O,-planes

2. Dimensional reduction:

fluctuations around background, infinite (towers) of them
— truncation to a finite set

— {5, — 4d theory < observations?

Truncation + 4d theory: low energy??
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ANDRIOT Consider 6d M which are curved /non-Ricci flat.
Away from the lamppost, different regions of the landscape,
new appealing phenomenological features:
- stabilize some specific moduli
- (some classical) de Sitter solutions require Rg < 0
w different behaviors/counterexamples w.r.t.
swampland conjectures?

Prime example: M being a group manifold:
most are curved, easy to handle.

M = Lie group / lattice , compact.

Truncation Underlying Lie algebra:

[V, Vil = faVe > de® = 1 fyue? n e

> M: ds2 = apee’ | e = e, da™ | fO. = 2w’ -

Known de Sitter, Minkowski, anti-de Sitter solutions with
M=group manifold (and fluxes, D,/O,).
= dimensional reduction — fluctuations + truncation ?
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1. Fluctuations: ®(z*,2™) = ., ¢! (x*)Ur(z™)

— find an appropriate basis {U;}: Laplacian A eigenmodes
= spectrum of Laplacian on M= nilmanifold.

2. Truncation(s): consistent truncations / low energy / relation
to swampland distance conjecture.

3. Recent de Sitter swampland criterion.
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3d Heisenberg Lie algebra:

[Vi,Va] = —£ V3, [V, V3] = [V2, V5] =0, t=—f%9
de3 =fel ne?; del=0: de?=0

— 3d nilmanifold M.

Build 6d M = M x M', M x T3.

Coordinates with (positive) radii rm=123:

el =rlda! ; €2 =r3da?; e =143 (dac3 + ledacQ)
N=rtrffez*

V= Sd3:c g = rir?ps

Geometry: fibration of a S on a base T7,.
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Scalars U —l
Uk,I,n M.
Exact one-forms | dv,, (pg # 0) —pa
dug 1 —M;, .,
Co-closed one-forms B Y27
Biﬁ_,l,n Yf,l,n

2- and 3-forms obtained by Hodge star on 1-forms and scalars
= complete spectrum of A,,.

(A + /j’g,q)vpaq =0 ) (A + M]§7l7n)uk,l,n =0

_ 2 _ 2
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Eigenmodes Eigenvalues
Scalars U —l
Uk,I,n M.
Exact one-forms | dv,, (pg # 0) —pa
dug 1 —M;, .,
Co-closed one-forms B Y27
Biﬁ_,l,n Yf,l,n

2- and 3-forms obtained by Hodge star on 1-forms and scalars
= complete spectrum of A,,.

2 2
(A+ /“‘p,q)vpgz =0, (A+ Mk,l,n)“k,lm; 0
Advy,q = “Hpq dvp,g , Adugin = 7Mk:,l,n dug,in

1 2mipzt 2migx?

Vpq(x',x?) = ﬁe P,qEL

120 =02 (EV+?(B), M2, = k% (2)°+ (2n+1)[%| 2t

Uk 1,n (Xl 5 th X3) =

r2 1
‘N‘V /2nnl
where ®(z) = \Aﬁ 3P H (|\2z2), keZ*,neN

e

o2mik(z®+ N ztz?) 2wilz! 2mwikmat A
=c ( e D mez € D (wy,)
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AB=YB

’I‘pq P2+Q
PP g #£0: Bg-Q=Dvp,q(Qe _pe?y ), 3)

it
p=q=0: Bf’o =wpel, BZ’ = wp,0 €7 (YB‘O =0)
B?()LO =00 63 (Y_E,O _ f2)

(P=p27r Q:qQTr)
YRU-pP2y @+ L4 \/(P2+Q2 fz) — (P?+ Q?)?

3
k,In _ k,l,n m
By = Z

w1 n+1)(n + 2)£2
80]1” :§CV2" (Ukln ( X ) uk,l,n+2>

an + 2|\ + (n + 2)£2

= =3 (n+ D)(n + 2)£2

P2’ 55en( Yev/2nl (W,l, T A (T D) et
ki _ 1 T, f 2(n+1)(o¢n+2w)u

- - 2‘/\‘% . Qn + 2|>\| =+ (n L 2)f2 k,l,n+1

YR = k2 (38)° + (20 + 3) 35 |t] + 327
1/ (Z5Ike] + 5£2)° + 2(n + 1) 25 |Re 2
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Standard truncation on group manifolds:

Scherk—Schwarz truncation:

keep the left-invariant /Maurer—Cartan forms: constant x e®.
(compare to previous spectrum: vy, , x €3 vy x e1:23)

— 4d theory: gauged supergravity, gaugings: f%..

Example with an SU(3) structure:

keep finite set of forms on M: 1,wy, ax, 8%, &7, volg, on which
fields are developed

+ build SU(3) structure forms J, €2, analogous to CY

— N = 2 gauged supergravity.

Scherk—Schwarz truncations are consistent truncations:
select set of “independent” or decoupled modes — 4d theory.
However: not low energy truncation/not low energy theory:
light modes a truncated, heavy modes are kept.
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2

= hierarchy of scales: |f| « L, & « %

: T . T
Hierarchy between curvature vs radii scales,
geometric flux vs Kaluza—Klein scales.
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= hierarchy of scales: |f| « L, & « %
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Hierarchy between curvature vs radii scales,
geometric flux vs Kaluza—Klein scales.
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8 N
_f 12=1f= P
< consider approximation: r3 < |[N|r3 « rl, r

(small fiber/large base)

2

= hierarchy of scales: |f| « L, & « %

: T . T
Hierarchy between curvature vs radii scales,
geometric flux vs Kaluza—Klein scales.

. . 11
Low energy approximation: truncate masses > =T, 3,

rir2
— apply on the complete spectrum of Laplacian,
left with light modes (mass = 0 or |f]):
1, el e e e2ned, eSnel, el ne?, el ne?nel

up to normalisation constant vg o = ﬁ

Surprise: low energy truncation matches Scherk—Schwarz trunc.
(on the Laplacian spectrum, in this regime)
Specific to nilmanifold w.r.t. to other group manifolds.
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In field space, move from ¢g to ¢g + A¢:
a tower of modes of mass m(¢) becomes light:

m(do + Ad) = m(do) f(do, Ap) e

If at ¢g: v effective theory = ruined at ¢g + Adc.

Test this here on towers of Laplacian eigenmodes:

8 e oD : 2 D e P ot 9 B s oD
points in field space: "% <dls—t> ° <dls—t> " e
B number of light modes:  finite finite infinite
masses of light modes: 0, |£| 0 0, 4/ YP1

Summary

Distance? Compute kinetic terms...

Counterexample of the conjecture?
String effects? Quantum effects?
Due to the nilmanifold geometry, away from the lamppost...
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Consider gravity minimally coupled to scalar fields with
potential V (¢;):

S = Jd‘lx |ga| (R4 + kin. terms — V)

Solutions with constant scalars:

Ruy—g%,RA:_g%V:},RA:QVv a¢zV:0

Extrema of potential, value V|p: maximally symmetric 4d
space-time, cosmological constant A = %V\o, de Sitter Vo > 0.
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Consider gravity minimally coupled to scalar fields with
potential V (¢;):

S = Jd‘lx |ga| (R4 + kin. terms — V)

Solutions with constant scalars:

Ruy—g%,RA:_g%V:},RA:QVv a¢zV:0

Extrema of potential, value V|p: maximally symmetric 4d
space-time, cosmological constant A = %V\o, de Sitter Vo > 0.

Recent swampland criterion: any low energy effective theory
of a consistent quantum gravity (i.e. not in the swampland)
should verify the criterion

cV <|VV]

where ¢ > 0, [VV| = /g0y, Vg, V.
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Consider gravity minimally coupled to scalar fields with
potential V (¢;):

S = Jd‘lx |ga| (R4 + kin. terms — V)

Solutions with constant scalars:

Ruy—g%,RA:_g%V:},RA:QVv a¢zV:0

Extrema of potential, value V|p: maximally symmetric 4d
space-time, cosmological constant A = %V\o, de Sitter Vo > 0.

Recent swampland criterion: any low energy effective theory
of a consistent quantum gravity (i.e. not in the swampland)
should verify the criterion

cV <|VV]

where ¢ > 0, [VV| = /g0y, Vg, V.

= extremum: V|y < 0 = no de Sitter solution
(+ cosmological consequences)



David
ANDRIOT

Introduction

Laplacian

pectrum
Truncation
De Sitter

Summary

Inspired by situation of de Sitter vacua in string theory:
difficult /unnatural.
Searches have provided similar conditions/criteria.



David
ANDRIOT

Introduction

Truncation
De Sitter

Summary

Inspired by situation of de Sitter vacua in string theory:
difficult /unnatural.

Searches have provided similar conditions/criteria.
4d constructions: difficult to lift to controlled string th. setup

10d solutions, but unstable (tachyonic). No known example of
a (meta)stable classical 10d de Sitter solution



David
ANDRIOT

Introduction

Truncation
De Sitter

Summary

Inspired by situation of de Sitter vacua in string theory:
difficult /unnatural.
Searches have provided similar conditions/criteria.

4d constructions: difficult to lift to controlled string th. setup
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vacuum/(meta)stable solution: +03 V > 0.

Difficulty is to have V' > 0, 04,V =0, ('7’3%V > (0 together



Inspired by situation of de Sitter vacua in string theory:

David difficult /unnatural.
ANDRIOT

Searches have provided similar conditions/criteria.

4d constructions: difficult to lift to controlled string th. setup
10d solutions, but unstable (tachyonic). No known example of
a (meta)stable classical 10d de Sitter solution

Distinction: extremum/solution: 04,V = 0 and
vacuum/(meta)stable solution: -I—@iiV > 0.

Difficulty is to have V' > 0, 04,V =0, (?;iV > (0 together
— a natural criterion:

3 b; € R, ¢; € Ry such that

Truncation

De Sitter

V+ Y bi 6106,V + D ci 6705,V <0

Summary

Solution: Vo + Zci (¢§5’§>iv)|0 <0

= no stable de Sitter solution, tachyonic de Sitter sol. v .

= checks? Cosmological implications?
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There exist (unstable) 10d classical de Sitter solutions:

in type ITA/B with intersecting D, /O,, on group manifolds
= |VV| > ¢V wrong ?

Distinguish: 10d solution and 4d low energy effective theory,

especially if not a consistent truncation.

Argument saying that two points can be compatible:
Known 10d de Sitter solutions + 4d low energy effective theory
without de Sitter solutions: v'.
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in type ITA/B with intersecting D, /O,, on group manifolds

= |VV| > ¢V wrong ?
Distinguish: 10d solution and 4d low energy effective theory,
especially if not a consistent truncation.

Argument saying that two points can be compatible:
Known 10d de Sitter solutions + 4d low energy effective theory
without de Sitter solutions: v'.

Known 10d classical de Sitter solutions: not on nilmanifold
4d low energy (truncation) does not preserve the solution:
some internal (geometric) scales of 10d solution not low energy.
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There exist (unstable) 10d classical de Sitter solutions:
in type IIA/B with intersecting D,/O,, on group manifolds

= |VV| > ¢V wrong ?
Distinguish: 10d solution and 4d low energy effective theory,
especially if not a consistent truncation.

Argument saying that two points can be compatible:
Known 10d de Sitter solutions + 4d low energy effective theory
without de Sitter solutions: v'.

Known 10d classical de Sitter solutions: not on nilmanifold
4d low energy (truncation) does not preserve the solution:
some internal (geometric) scales of 10d solution not low energy.

— which de Sitter swampland criterion is valid? (if any)
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Obtained Laplacian spectrum on a nilmanifold

Found a low energy truncation that matches
Scherk—Schwarz truncation; probably only for nilmanifolds

Used the spectrum to “test” (refined) swampland distance
conjecture, maybe a counterexample

Proposed a new de Sitter swampland criterion that
includes the notion of stability

But an argument why 10d classical de Sitter solutions and
no 4d de Sitter sol. in low energy effective theory can be
compatible
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Summary

Obtained Laplacian spectrum on a nilmanifold

Found a low energy truncation that matches
Scherk—Schwarz truncation; probably only for nilmanifolds

Used the spectrum to “test” (refined) swampland distance
conjecture, maybe a counterexample

Proposed a new de Sitter swampland criterion that
includes the notion of stability

But an argument why 10d classical de Sitter solutions and
no 4d de Sitter sol. in low energy effective theory can be
compatible

Thank you for your attention!
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