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F-theory [Vafa ’96]

• Non-perturbative type IIB string theory


• Varying axio-dilaton 

• Encoded in additional auxiliary torus over 
(compact complex) base manifold B via 
SL(2,Z) invariance


• Geometrization of physical properties


• Great framework for phenomenology

y2 = x3 + fx+ g ! ord(f, g,�), � = 27g2 + 4f3

Elliptically-fibered Calabi-Yau n-folds (here n = 3)
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F-theory (local and global)

• Codimension-one singularity 
induces non-Abelian gauge 
algebra 

• Codimension-two singularity 
encodes matter


• No gravitational anomalies

• Mordell-Weil group dictates 
U(1) symmetries and non-
Abelian gauge group 

• Multi-sections lead to 
discrete gauge symmetries


• Gravitational anomalies
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Non-flat fibers

• Resolution in fiber not enough for smooth geometry


• Blow-up in the base 

• Strongly coupled dynamics (superconformal matter)

ord(f, g,�) � (4, 6, 12)

• Generically appear for GUT gauge groups, for SO(10) see e.g. 
[Buchmuller, MD, Oehlmann, Ruehle ’17]


• Lead to non-trivial 6d SCFTs in decoupling limit, reviewed 
in [Heckman, Rudelius ’18]

Why do we care?
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Transitions

• 6d SUGRA defined by gauge algebra, matter spectrum and tensors 

• Complex structure deformation to (4,6,12) point


• Deformation to tensor branch

Strong coupling dynamics hard to study directly (no 
supergravity limit)


Indirect investigation via transitions 
see also [Anderson, Gray, Raghuram, Taylor ’15]

strongly- 
coupled 
theory

6d SUGRA 6d SUGRA
(g,S, T ) (g, S̃, T̃ )

!5



6d anomalies
• Strict anomaly constraints in six dimensions 

• Irreducible anomalies have to vanish

H � V + 29T � 273 = 0

Badj �
X

R

n[R]BR = 0

trRF 4 = BR trF 4 + CR (trF 2)2

• Reducible can be cancelled by generalized Green-
Schwarz mechanism, [Green, Schwarz ’84], [Sagnotti ’92], [Sadov ‘96]

Ired
8 = � 1

32⌦↵�X
↵X�
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trRF 2 = AR trF 2



Green-Schwarz and geometry 
e.g. [Park ’11], [Park, Taylor ’11], [Morrison, Park ‘12]

•           a basis for                 then:                                  
describes the participating tensor fields


•        is the vector describing the anticanonical class 


•        is the vector describing the locus on which gauge 
algebra      is localized


•        describes the coefficient of the height pairing  
accounting for Abelian symmetries

Ired
8 = � 1

32⌦↵�X
↵X� , X↵ = 1

2a
↵trR2 � 2

�b
↵trF 2 �

X

i,j

2b↵ijFiFj

{H↵} H2(B,Z) ⌦↵� = H↵ ·H�

K�1
Ba↵

b↵

g

b↵ij �⇡(�i · �j)
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Transitions geometrically [Bershadsky, Johansen ’96]

• Divisor     with gauge algebra     


• Intersection with divisor       (possible matter locus)


• Complex structure deformation to (4,6,12) point


• Blow-up in base with self-intersection -1 curve

ZD ZD

Z g

D

E

E

Z̃
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D̃



Anomalies after blow-up

• Get rid of 29 degrees of freedom in hypermultiplet sector


• More possibilities for Green-Schwarz mechanism
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Additional tensor multiplet:

Involved matter representations constrained?

• Non-Abelian representations fixed 

• Abelian charges can be constrained



We use:

• Smoothness of fiber over      (no new gauge group)


• Properties of the blow-down map    :


• Fixed transformation of anticanonical class:


• Orthogonality properties of Shioda map


• New basis of second homology:

E

�

�⇤ : H2(B̃,Z) ! H2(B,Z) , �
�1
⇤ (D) · ��1

⇤ (D0)|B̃ = D ·D0|B

K�1
B̃

= ��1
⇤ (K�1

B )� E

�
�1
⇤ (H↵) = H̃↵ + h↵E ,

{H↵}B ! {H̃↵, E}B̃
!10



Anomalies in transition

From connection between geometry and anomalies:

ZD

E

Z̃D̃

⌦↵� ! ⌦̃AB =

✓
⌦↵� � h↵h� h↵

h� �1

◆

a↵ ! ãA =

✓
a↵

a↵h↵ � 1

◆

b↵ ! b̃A =

✓
b↵

0

◆
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Non-Abelian matter fixed
Back to matter states:

X

R

�n[R]dim(R) < 29 ,

X

R

�n[R]BR = 0 ,

�2

3

X

R

�n[R]CR = �1 ,

�
6

X

R

�n[R]AR = �1

• SU(5):


• SO(10):
�S � �(10� 5� 5� 5)

�S � �(16� 10)
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Abelian matter
With assumption: 

⌦↵��b↵ij(b
� � a�) = 0

Curiously always satisfied for toric hypersurfaces with genus-one Z

�
X

R,i,j

�n[R, qi, qj ]qiqjAR � 1
6

X

i,j

�n[qi, qj ]qiqj = 0

Satisfied in all examples:

• SU(5):


• SO(10):
�S = �(10�3/5 � 3⇥ 51/5 � 3⇥ 11 � 10)

�S = �(161/4 � 101/2 � 11 � 2⇥ 10)
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Toric geometry
e.g. [Klevers, Mayorga Pena, Oehlmann, Piragua, Reuter ‘14]

Using the top construction and connected toric geometry:
[Batyrev ’94], [Candelas, Font ’98],[Bouchard, Skarke ’03]

Point in face corresponds to non-flat fiber see also [Braun, Grimm, Keitel ’13]

Complex structure

deformation

h1,1(Y3) = rank(G) + h1,1(B)� 1 +
X

i

�inSCPi

Modification of number of neutral singlets in presence of non-
flat fibers
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Conclusions
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• Consistency conditions for coupling strongly-coupled 

sectors to gravity see also [del Zotto, Heckman, Morrison, Park ‘15]


• Inclusion of global data controlling Abelian symmetries


• Toric realization in terms of hypersurfaces and tops

Outlook
• Extension to higher-order singularities 

• Direct investigation of non-flat fibers [Achmed-Zade, Garcia-

Etxebarria, Mayrhofer ’18] 
• Comparison with Abelian flavor symmetries in 

decoupling limit [Lee, Regalado, Weigand ’18]


