Supersymmetry enhancement via T-branes

Federico Carta.

IFT-UAM/CSIC

4th of July 2018

Federico Carta. (IFT-UAM/CSIC)

Supersymmetry enhancement via T-branes

4th of July 2018 1 / 14

3 > 4 3

• F.C, S.Giacomelli, R.Savelli. [To appear]

Related work:

- K.Maruyoshi, J.Song. 2016
- P.Agarwal, K.Maruyoshi, J.Song. 2016
- P.Agarwal, A.Sciarappa, J.Song. 2017
- S.Benvenuti, S.Giacomelli. 2017
- J.Heckman, Y.Tachikawa, C.Vafa, B.Wecht. 2010

4th of July 2018

2/14

Supersymmetry enhancement.

- A UV QFT follows an RG flow to a IR QFT with more explicit supersymmetry.
- Intrinsically interesting phenomenon in QFT.
- Can use the lagrangian to compute RG-protected quantities.

A schematic picture.

2 BG flows. $3d \mathcal{N} = 2 \rightarrow \mathcal{N} = 4$

- Ungauging quiver tails. (Gadde-Rastelli-Razamat).
- $3d \mathcal{N} = 1 \to \mathcal{N} = 2.$ (Komargodski).
- 3d CS-Maxwell. (Yamazaki).

Maruyoshi-Song flows.

- Start in UV with a $4d \mathcal{N} = 2$ SCFT \mathcal{T} with flavor symmetry F.
- Add by hand a $\mathcal{N} = 1$ chiral M.
- *M* is gauge singlet and in the adjoint of the *F*.
- Turn on a superpotential term $W_{def} = TrM\mu$ where μ is the moment map operator. ($\mu \simeq q\tilde{q}$ if \mathcal{T} is lagrangian).
- Give a special kind of vev to M. This triggers a RG flow.
- Depending on the choice of \mathcal{T} and $\langle M \rangle$ sometimes we find that $\mathcal{T}[\langle M \rangle]$ flows in the IR a *new* $\mathcal{N} = 2$ SCFT: call it $\mathcal{T}[\langle M \rangle]_{IR}$.
- "New" means $\mathcal{T}[\langle M \rangle]_{IR} \neq \mathcal{T}$

Nilpotent orbit vev.

- *M* is a matrix in the adjoint of *F*.
- We choose $\langle M \rangle$ to be along a nilpotent orbit of $\mathfrak{f}_{\mathbb{C}}$
- Nilpotent orbit is defined as ghg^{-1} for $g \in F$ and $h \in \mathfrak{f}_{\mathcal{C}}$ nilpotent.
- Nilpotent orbits are *completely classified* by mathematicians.
- Classification by partitions of numbers for classical algebras.
- Classification by Bala-Carter labels for exceptional algebras.
- $\bullet\,$ For a fixed ${\cal T},$ finite number of possible MS deformations.

Example:

$$\langle M \rangle = \begin{pmatrix} 0 & 1 \\ \mathbf{x} & 0 \end{pmatrix} \tag{1}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

is nilpotent vev in the maximal nilpotent orbit of \mathfrak{sl}_2 .

Enhancing flows connecting rank 1 theories

A figure summarizing all the existent MS connecting rank one theories. Multiple flows happen for different nilpotent orbit deformations.

Evidence for the enhancement.

a-maximization.

- **1** $\mathcal{N} = 2 U(1)_r \times SU(2)_R$ R-symmetry is broken to $U(1)_{\mathcal{N}=1}^{UV} \times U(1)_{\mathcal{F}}$ **2** $U(1)_{\mathcal{N}=1} = U(1)_{\mathcal{N}=1}^{UV} + \epsilon U(1)_{\mathcal{F}}$ mixing of R-symmetry and flavor.
- 3 $a(\epsilon)$ and $c(\epsilon)$ central charges depend on ϵ .
- $a(\epsilon)$ is extremal at the IR fixed point. \implies find ϵ^*
- \bigcirc If a and c are rational, good evidence for enhancement.
- Often find a and c of previously known AD theories.

• The full Superconformal Index.

- **(**) Compute the UV $\mathcal{N} = 1$ Index by SUSY localization.
- 2 Upon finding the extremizing ϵ^* , shift the index fugacities
- 3 Find the $\mathcal{N} = 2$ index
- Check limits of the index against previously computed cases. (Shur, McDonald, Coulomb, HL, HS of 3d mirror CB)
- Huge evidence for enhancement.

イロト 不得 トイヨト イヨト

The easiest example. H_1 AD theory.

• Let $\mathcal{T} = AD_{N_f=2}[SU(2)] \simeq H_1 \simeq (A_1, A_3)$. The flavor symmetry is SU(2). Add M and give vev along the maximal nilpotent orbit of \mathfrak{sl}_2 . Namely

$$\langle M \rangle = \begin{pmatrix} 0 & 1 \\ \mathbf{x} & 0 \end{pmatrix}$$
(2)

2 The trial central charge is

$$a(\epsilon) = \frac{3}{32} \left(3 \operatorname{tr} \mathcal{R}_{\mathcal{N}=1}^3 - \operatorname{tr} \mathcal{R}_{\mathcal{N}=1} \right)$$
(3)

8 By extremizing
$$\frac{da(\epsilon)}{d\epsilon} = 0 \implies \epsilon^* = \frac{9}{15}$$

$$a(\epsilon^*) = \frac{43}{120} \quad c(\epsilon^*) = \frac{11}{30} \implies H_0 \text{ Theory!}$$
(4)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open questions.

- Why only some specific nilpotent vevs for M give Susy enhancement?
- ② Can one find more examples of SCTs showing these features?
- Can one understand in a more direct way why the enhancement happens, from a physical point of view?
- Is there a way to see this phenomenon from a String Theory engineering of the QFT?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The BIG scan

MS flows starting form lagrangian SCFTs are constrained.

- Superconformal quivers with bifund hypers have always ADE shape.
- 2 The number of nilpotent orbit is finite, and not too huge.
- Even allowing non-bifund hypers, small list of exception (Tachikawa-Bhardwaj)
- ② Write a program to run the a-max test for a very large calss of $(\mathcal{T}, \langle M \rangle)$.
- Solution Find one new case in rank 1: E_7 MN with orbit with BC label E_6 flows to H_1 .
- \circ 1000 cases checked among superconformal quivers of *D* and *E* shape, or also non-bifund matter.

The BIG scan

MS flows starting form lagrangian SCFTs are constrained.

- Superconformal quivers with bifund hypers have always ADE shape.
- 2 The number of nilpotent orbit is finite, and not too huge.
- Even allowing non-bifund hypers, small list of exception (Tachikawa-Bhardwaj)
- Write a program to run the a-max test for a very large calss of (*T*, (*M*)).
- Solution Find one new case in rank 1: E_7 MN with orbit with BC label E_6 flows to H_1 .

The BIG scan

MS flows starting form lagrangian SCFTs are constrained.

- Superconformal quivers with bifund hypers have always ADE shape.
- 2 The number of nilpotent orbit is finite, and not too huge.
- Even allowing non-bifund hypers, small list of exception (Tachikawa-Bhardwaj)
- Write a program to run the a-max test for a very large calss of (*T*, (*M*)).
- Solution Find one new case in rank 1: E_7 MN with orbit with BC label E_6 flows to H_1 .
- ~ 1000 cases checked among superconformal quivers of *D* and *E* shape, or also non-bifund matter. ZERO enhancements. We conjecture that this class never give S.E.

The geometrical picture. Part 1

- Consider a F-theory setup, with a D3 probing the elliptic fibration.
- Write the Weierstrass model for the elliptic fibration. The theory on the D3 will be the theory T in the UV. In particular the Weiestrass model fixes the flavor group F.
- Elliptic fiber \simeq Seiberg-Witten curve of the QFT.
- The chiral *M* is geometrized by a T-brane deformation of the 7-brane stack.
- There is a one-to-one correspondence between nilpotent orbits and versal deformation of the Weierstrass model.

The geometrical picture. Part 2

Singularity	Curve	Flavor group
II^*	$u^{2} = v^{3} + v(M_{2}z^{3} + M_{8}z^{2} + M_{14}z + M_{20}) + (z^{5} + M_{12}z^{3} + M_{18}z^{2} + M_{24}z + M_{30})$	E_8
III^*	$u^{2} = v^{3} + v(z^{3} + M_{8}z + M_{12}) + (M_{2}z^{4} + M_{6}z^{3} + M_{10}z^{2} + M_{14}z + M_{18})$	E_7
IV^*	$u^{2} = v^{3} + v(M_{2}z^{2} + M_{5}z + M_{8}) + (z^{4} + M_{6}z^{2} + M_{9}z + M_{12})$	E_6
I_0^*	$u^{2} = v^{3} + v(\tau z^{2} + M_{2}z + M_{4}) + (z^{3} + \tilde{M}_{4}z + M_{6})$	SO(8)
IV	$u^2 = v^3 + v(M_{1/2}z + M_2) + (z^2 + M_3)$	SU(3)
III	$u^2 = v^3 + vz + (M_{2/3}v + M_2)$	SU(2)
II	$u^2 = v^3 + vM_{4/5} + z$	no

Table: Maximally deformed Weierstrass models

- The parameters M_i are the versal deformations of the model
- They correspond to casimir operators of the Higgs field in the F-theory picture, which we take to be $\langle M \rangle$
- $\langle M \rangle$ is in turn fixed by the chosen nilpotent orbit.

(I) > (A) > (A) = > (A) = >

The geometrical picture. Part 3

- When the D3 probes the deformed Weiestrass model, the theory is $\mathcal{N} = 1$, due to the T-brane presence.
- RG flow is a local zoom at the singularity. In the IR the probe does not have enough energy to resolve global aspects of the singularity.
- In the IR, some terms in the Weiestrass become subleading. We throw them away and recover the Weierstrass for \mathcal{T}^{IR}
- It is often esay to see which terms are subleading, just by rescaling $\langle M \rangle \to m \langle M \rangle$ and looking how m enters in the casimirs M_i .

Federico Carta, (IFT-UAM/CSIC)

We perform an a-max scan on (T, (M)) larger than the one presented in the literature. Among rank 1 theories we find a new enhancement case, for the MN E₇ theory flowing to H₁.

< 回 > < 三 > < 三 >

- We perform an a-max scan on (*T*, ⟨*M*⟩) larger than the one presented in the literature. Among rank 1 theories we find a new enhancement case, for the MN *E*₇ theory flowing to *H*₁.
- For \mathcal{T} given by a superconformal quiver of rank > 1 we find only the examples already discovered in the literature (Flows with \mathcal{T} =linear quiver ending to (A_n, A_m) and (A_n, D_m)). It is an open question why superconformal quivers of type D and E generically don't give enhancement.

4th of July 2018

14/14

- We perform an a-max scan on (*T*, ⟨*M*⟩) larger than the one presented in the literature. Among rank 1 theories we find a new enhancement case, for the MN *E*₇ theory flowing to *H*₁.
- For \mathcal{T} given by a superconformal quiver of rank > 1 we find only the examples already discovered in the literature (Flows with \mathcal{T} =linear quiver ending to (A_n, A_m) and (A_n, D_m)). It is an open question why superconformal quivers of type D and E generically don't give enhancement.
- We have a geometrical understanding of S.E. for the rank 1 case.
 Extra chiral M = a T-brane deformation of a 7-brane stack. RG flow = local zoom in the singularity locus of the elliptic fibration.
 MS = T.

イロト 不得 トイヨト イヨト

- We perform an a-max scan on (*T*, ⟨*M*⟩) larger than the one presented in the literature. Among rank 1 theories we find a new enhancement case, for the MN *E*₇ theory flowing to *H*₁.
- For \mathcal{T} given by a superconformal quiver of rank > 1 we find only the examples already discovered in the literature (Flows with \mathcal{T} =linear quiver ending to (A_n, A_m) and (A_n, D_m)). It is an open question why superconformal quivers of type D and E generically don't give enhancement.
- We have a geometrical understanding of S.E. for the rank 1 case.
 Extra chiral M = a T-brane deformation of a 7-brane stack. RG flow = local zoom in the singularity locus of the elliptic fibration.
 MS = T.
- Geometrizing rank > 1 is Work in Progress.

3

イロト 不得 トイヨト イヨト

- We perform an a-max scan on (*T*, ⟨*M*⟩) larger than the one presented in the literature. Among rank 1 theories we find a new enhancement case, for the MN *E*₇ theory flowing to *H*₁.
- For \mathcal{T} given by a superconformal quiver of rank > 1 we find only the examples already discovered in the literature (Flows with \mathcal{T} =linear quiver ending to (A_n, A_m) and (A_n, D_m)). It is an open question why superconformal quivers of type D and E generically don't give enhancement.
- We have a geometrical understanding of S.E. for the rank 1 case.
 Extra chiral M = a T-brane deformation of a 7-brane stack. RG flow = local zoom in the singularity locus of the elliptic fibration.
 MS = T.
- Geometrizing rank > 1 is Work in Progress.

Thank you for your attention.

3