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y ∼ y + 2π̂ϕ = ∑
n∈ℤ

ϕneinyDécomposition in Fourier modes

• massive modes run in loops  
• may be relevant (e.g. anomalies) 

mn =
n
Rmass
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Pauli-Villars regularisation

Need to preserve the UV symmetries, here 4D Lorentz invariance 

One way: regulate quantity in 4D, e.g. using PV, and perform reduction  

Θ =
1
2

+ ⌊ζ⌋−
2
3

ζResult 

Θ = lim
M→∞

∞

∑
n=−∞

2
π ∫ dk k2 mn

(k2 − m2
n)2

−
a2

k mn + μM2(ak + 2
3 k2)

(akbk − μ2M2)2

where ak = k2 − n2 − M2

bk = k2 − m2
n − M2

mn = n + q ζ

div piece PV piece

shifts as expected!

[PC,Grimm,Regalado’10]
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Cancellation of anomalies

3D effective action 
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• gauge invariant 
• incorporates one-loop effects
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Pierre Corvilain — Circle Compactification, Anomalies and Field Distances

Cancellation of anomalies

Assumptions: • Geometry can be smoothed 
• Chirality induced by ‘standard’      -flux

4D effective actions of F-theory have no chiral anomaly

3D effective action 

from M-theory: 

• gauge invariant 
• incorporates one-loop effects

3D theory is gauge 

invariant at one loop
4D chiral anomalies  

are cancelled

[PC,Grimm,Regalado’10]
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[Ooguri, Vafa ’06]
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In particular, Infinite distance singularities

metric ∼ gij dϕi ∧ ⋆ dϕ j

tower of light states

Swampland Distance Conjecture

inf dist sing

Infinite Distance 
in moduli space

Infinitely many 
light states

×

ϕi

moduli space

SDC

Strong evidence for this conjecture in the 
complex structure moduli space of IIB on a CY
[Grimm, Palti, Valenzuela ’18] [Irene’s talk]
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Swampland Distance Conjecture

moduli space: 

R = 0 R = ∞

Circle compactification: tower of KK modes mn =
n
R

KK tower massless

?

metric ∼
1

R2
dR ∧ ⋆ dR

inf dist sing

become massless as R → 0

winding modes
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Infinite Distance 
in moduli space

Infinitely many 
light states

ϕi

×

tower of light states

metric ∼ gij dϕi ∧ ⋆ dϕ j

Emergence

inf dist sing integrate them out

SDC

Emergence

[see Irene’s talk]

Strong evidence in the complex 
structure moduli space of IIB on a CY



Pierre Corvilain — Circle Compactification, Anomalies and Field Distances

Emergence for circle reduction?

Circle: tower of KK modes mn =
n
R



Pierre Corvilain — Circle Compactification, Anomalies and Field Distances

Emergence for circle reduction?

Circle: tower of KK modes mn =
n
R

moduli space: 

R = 0 R = ∞

KK tower massless

classical metric ∼
1

R2
dR ∧ ⋆ dR



Pierre Corvilain — Circle Compactification, Anomalies and Field Distances

Emergence for circle reduction?

Circle: tower of KK modes mn =
n
R

moduli space: 

R = 0 R = ∞

KK tower massless

quantum metric ∼
1

R2
dR ∧ ⋆ dR

integrate  
it out?

classical metric ∼
1

R2
dR ∧ ⋆ dR



Pierre Corvilain — Circle Compactification, Anomalies and Field Distances

Emergence for circle reduction?

Circle: tower of KK modes mn =
n
R

moduli space: 

R = 0 R = ∞

KK tower massless

quantum metric ∼
1

R2
dR ∧ ⋆ dR

integrate  
it out?

classical metric ∼
1

R2
dR ∧ ⋆ dR

In the case of CY:  

sum up to the species bound:            

• same growth as stable BPS states 
• match with the classical metric



Pierre Corvilain — Circle Compactification, Anomalies and Field Distances

Emergence for circle reduction?

Circle: tower of KK modes mn =
n
R

moduli space: 

R = 0 R = ∞

KK tower massless

quantum metric ∼
1

R2
dR ∧ ⋆ dR

integrate  
it out?

classical metric ∼
1

R2
dR ∧ ⋆ dR

For a KK reduction?

In the case of CY:  

sum up to the species bound:            

• same growth as stable BPS states 
• match with the classical metric
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If evenly spaced tower ΛQG = N Δm

For a KK reduction:                

MD−2
pl,D = RMD−1

pl,D+1Δm =
1
R

N ∼ (RMpl,D)
D − 2
D − 1 = RMpl,D+1

Species bound in 3D 

ΛQG ∼ (MD−2
pl,D

R )
1

D − 1

= Mpl,D+1

ΛQG ∼ Mpl,D+1

Mpl,D

0

1
R

E

from D+1 to D:
n
R

≥ Mpl,D+1

Species bound and KK

ΛQG ≲
Mpl,D

N 1
D − 2

[Dvali ’07]

Number of species below ΛQG
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One-loop metric

species bound             4D regularisation!

N ∼ R Mpl,4

ΛR

∑
n=−ΛR

recall: 4D reg  

Use this bound the compute the loop corrections to the metric for R 

g1loop
RR =

N

∑
n=−N

dΠn

dp2
p2≪m2

n

∼
1

R2

Same R-dependence as the classical piece!

~ Emergence

Integrating out the winding mode ?
Other interpretation: unification 

[Heidenreich,Reece,Rudelius’18]
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Summary

Explored in detail how to sum modes of a KK tower 

Showed that information about chiral anomaly preserved in 3D 

Relation with the species bound

One-loop correction to the metric for R: same parametric dependence 
as classical piece

Thank you!

preserving higher dimensional symmetries

Emergence / unification

ΛQG ∼ Mpl,D+1

Chiral anomaly canceled in 4D effectives action of F-theory 
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3d computation: triangle diagram

P
 kk

A q

q

q

�

A

With the whole KK tower 
running in the loop!

NOT invariant under as expected

Again, 3D regularisation gauge invariant (0)

Using 4D Pauli-Villars, find 
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Unification

Compute the quantum corrections at that scale  

Suppose the scale strongly couple same as gravity   ~   unification

Assume K(ϕ) (∂ϕ)2

ΛQG

K(ϕ) ∼
1

ϕ2Ask that QC ~1

[Heidenreich,Reece,Rudelius’18]
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If evenly spaced tower ΛQG = N Δm

For a KK reduction:                

MD−2
pl,D = R0MD−1

pl,D+1Δm =
1
R ( R0

R )
1

D − 2

N ∼ (MD−2
pl,D

R0 )
1

D − 1

= RMpl,D+1

Species bound in 3D 

ΛQG ∼ (MD−2
pl,D

R )
1

D − 1

( R0

R )
1

D − 2

= Mpl,D+1 ( R0

R )
1

D − 2

ΛQG ∼ Mpl,D+1

Mpl,D

0

1
R

E

from D+1 to D:
n
R

≥ Mpl,D+1

Species bound and KK

ΛQG ≲
Mpl,D

N 1
D − 2

[Dvali ’07]

Number of species below ΛQG
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one loop metric

λn ∼ mn(R) m′�n(R)

dΠn

dp2
p2≪m2

n

∼ mD−4
n m′ �2

n

g1loop
RR =

N

∑
n=−N

dΠn

dp2
p2≪m2

n

∼
N

∑
n=−N

nD−2R0R−D−1

∼ ND−1R0R−D−1

∼ MD−2
D RD−1R−D−1

∼ MD−2
D R−2


