Primordial Black Holes from String Inflation

Victor Alfonzo Diaz

Based on **JCAP 1806 (2018) no.06, 034,** in collaboration with M. Cicoli & F. Pedro

Related Talk's: Cicoli, Zavala

Outline

• PBH formation

• PBHs from fibre inflation

• Summary & conclusions

Motivation

Idea of BHs as part of/main constituent of DM

(Obs. of gravitational wave merge of two BH's)

suggest existence

large population of BHs of 10's $\,M_{\odot}$

long-lived BHs produced during the early stage of the universe

[Hawking'71] [Carr, Hawking'74]

What about smaller masses?

[Ballestero, Taoso'18]

$$10^{-16} \ M_{\odot} \le M_{PBH} \le 10^{-14} M_{\odot}$$

way far from the LIGO region but still an interesting idea to study due to the lack of astrophysical explanation

How can we form PBH?

amplification of the density perturbation during inflation is need it

that form an important contribute to DM abundance $\sim (10\%-100\%)$

Enhancement of the power spectrum

How to generate this enhancement?

natural questions

Can it be done at the right scales?

Answer: framework of single field inflation reproducing the Planck data.

Enhancement achieved Inflationary potential : slow-roll point slow-roll point slow-roll

[Ballestero, Taoso'18] [Özsoy,Parameswaran,Tasinato,Zavala'18]

[Ivanov,Naselsky,Novikov'94] [Ezquiaga,Bellido,Ruiz'17]

NOTE:

ullet DM \equiv PBHs \Rightarrow Potential need to have enough tuning freedom

few examples: [Germani, Prokopec'17][Ballestero, Taoso'17] [Ivanov, Naselsky, Novikov'94] [Ezquiaga, Bellido, Ruiz'17]

These models are a bottom-up approach

| A continuous c

Possible solution:

String Theory can search for concrete examples of infl. models to allow PBH formation from a top-down perspective

PBH formation

Large & rare $\delta \rho$ re-enter the Hubble horizon and collapse

$$eta_{
m f}(M) = rac{
ho_{
m PBH}(M)}{
ho_{
m tot}}\Big|_{
m f}$$

 $eta_{\mathrm{f}}(M)$: fraction of the total energy density in PBH with mass M at formation

$$\beta_{\rm f}(M) = \int_{\delta_c}^{\infty} \frac{1}{\sqrt{2\pi} \,\sigma_{\rm M}} \, e^{-\frac{\delta^2}{2\sigma_{\rm M}^2}} \, d\delta$$

 δ_c : critical value for collapse into PBH

Gaussian distributions, we know $\sigma_M^2 \sim \langle \zeta \zeta \rangle$ at CMB scales is $\mathcal{O}(10^{-9})$

$$\sigma_M^2 \sim \langle \zeta \zeta \rangle$$

$$\zeta = u/z$$
 ; for $\sigma_M \ll \delta_c \Rightarrow \beta_{\rm f}(M) \sim \frac{\sigma_{\rm M}}{\sqrt{2\pi} \, \delta_c} \, e^{-\frac{\delta_c^2}{2\sigma_{\rm M}^2}}$

few order of magnitude large than on CMB scales

Estimation of the enhancement

$$M = \gamma_{\rm G} \left. \frac{4\pi}{3} \frac{\rho_{\rm tot}}{H^3} \right|_{\rm f} = 4\pi \gamma_{\rm G} \left. \frac{M_p^2}{H_{\rm f}} \right|_{\rm f}$$

 γ_G : correction factor

Mass of PBH forming when M: large density pert. re-enter the horizon

PBH behave

$$\Rightarrow$$

PBH behave like matter
$$\Rightarrow \beta_{\rm f}(M) = \left(\frac{H_0}{H_{\rm f}}\right)^2 \frac{0.26}{a_{\rm f}^3} \, f_{\rm PBH}(M)$$

Assumption: PBH form before Matter-Radiation equality

$$H_{\rm f}^2 = 8 \times 10^{-5} \, \frac{H_0^2}{a_{\rm f}^4} \left(\frac{g_{*\rm f}}{g_{*\rm 0}}\right)^{-1/3} \qquad \Longrightarrow \qquad \beta_{\rm f}(M) \simeq \frac{4}{\sqrt{\gamma_{\rm G}}} \times 10^{-9} \left(\frac{g_{*\rm f}}{g_{*\rm 0}}\right)^{1/4} \sqrt{\frac{M}{M_\odot}} \, f_{\rm PBH}(M)$$

$$\beta_{\rm f}(M) \simeq 10^{-8} \sqrt{\frac{M}{M_{\odot}}}$$
 \Longrightarrow $\delta_c \sim 1$ $\sigma_M \sim 0.12$ \Longrightarrow $M = 10^{-15} M_{\odot}$

Power spectrum $P_k \sim \sigma^2 \sim \mathcal{O}(10^{-2})$

We need an enhancement of 7 orders of magnitude respect to CMB

Observations:

1. Estimation

Broadly
$$f_{PBH}(M) = \int df_{PBH}(M) = \int \frac{df_{PBH}(M)}{d \log(M)} d \log(M)$$

 $df_{PBH}(M)$ is the fraction between M and $M+d\log(M)$

2. $H \sim$ is constant during inflation

$$\Delta N_{\text{CMB}}^{\text{PBH}} = \ln \left(\frac{a_{\text{PBH}} H_{\text{inf}}}{a_{\text{CMB}} H_{\text{inf}}} \right) = \ln \left(\frac{a_{\text{f}} H_{\text{f}}}{0.05 \,\text{Mpc}^{-1}} \right)$$
$$= 18.4 - \frac{1}{12} \ln \left(\frac{g_*}{g_{*0}} \right) + \frac{1}{2} \ln \gamma_{\text{G}} - \frac{1}{2} \ln \left(\frac{M}{M_{\odot}} \right)$$

$$M \in [10^{-16}, 10^{-14}] M_{\odot}$$
 \longrightarrow $\Delta N_{\rm CMB}^{\rm PBH} \sim 34.2 - 36.5 \text{ efoldings}$

PBH from fibre inflation $V = t_{\mathbb{P}^1} \tau_{K3} - \tau_{dP}^{3/2}$

$$\mathcal{V} = t_{\mathbb{P}^1} au_{ ext{K3}} - au_{ ext{dP}}^{3/2}$$

[Cicoli, Burgess, Quevedo'09]

 $au_{
m K3}$: Volume of K3-surface fibre over a $\,\mathbb{P}^1$

 au_{dP} : Volume of a diagonal del Pezzo

 $t_{\mathbb{P}^1}$: Volume of \mathbb{P}^1

$$\mathcal{V}$$
, τ_{dP} Lifted by non-pert. effects to W & α' correct. to K at leading order in $1/\mathcal{V}$

 $\tau_{\rm K3}$: remain as a flat direction \Rightarrow our inflaton candidate

Way of lifting:

- 1-loop string corrections: KK-corrections & Winding corrections
- Higher derivative α' effects

[Berg, Haack, Kors'05] [Berg, Haack, Pajer'07]

$$V_{\text{inf}} = \frac{W_0^2}{\mathcal{V}^3} \left[\frac{C_{\text{up}}}{\mathcal{V}^{1/3}} - \frac{C_{\text{W}}}{\sqrt{\tau_{\text{K3}}}} + \frac{A_{\text{W}}}{\sqrt{\tau_{\text{K3}}} - B_{\text{W}}} + \frac{\tau_{\text{K3}}}{\mathcal{V}} \left(D_{\text{W}} - \frac{G_{\text{W}}}{1 + R_{\text{W}}} \frac{\tau_{\text{K3}}^{3/2}}{2} \right) \right]$$

$$\tau_{\rm K3} = \langle \tau_{\rm K3} \rangle e^{\frac{2}{\sqrt{3}}\hat{\phi}}$$

	$\parallel C_{ m W}$	$A_{ m W}$	B_{W}	$G_{ m W}$	$R_{ m W}$	$\langle au_{ m K3} angle$	$\langle \mathcal{V} angle$
\mathcal{P}_2	4/100	2/100	1	3.080548×10^{-2}	$\left[\begin{array}{c} 0.7071067 \end{array} \right]$	14.30	1000

• minimum :
$$\langle au_{\mathrm{K3}} \rangle \sim \frac{C_{\mathrm{W}} B_{\mathrm{W}}^2}{(\sqrt{C_{\mathrm{W}}} - \sqrt{A_{\mathrm{W}}})^2}$$

ullet 5th term in the potential has a critical point : $\; rac{2^{2/3}}{(R_{
m W}/{\cal V})^{2/3}}$

 $G_{\rm W}$, R_W ------- crucial for the generation of the near inflection point

Power spectrum

Mukhanov-Sasaki

slow-roll

$$P_k = \frac{k^3}{2\pi^2} \left| \frac{u_k}{z} \right|^2 \qquad P_k = \frac{H^2}{8\pi^2 \epsilon} \Big|_{k=aH}$$

$$u_k''(\eta) + (k^2 - z''/z) u_k(\eta) = 0$$

$$\frac{z''}{z} = (aH)^2 \left[2 - \epsilon + \frac{3}{2}\eta - \frac{1}{2}\epsilon\eta + \frac{1}{4}\eta^2 + \frac{1}{2}\eta\kappa \right]$$

$$\epsilon = -\frac{\dot{H}}{H^2} \quad \eta = \frac{\dot{\epsilon}}{\epsilon H} \quad \kappa = \frac{\dot{\eta}}{\eta H}$$

 u_k : re-scaled curvature pert. $\zeta=u/z$

$$z \equiv \sqrt{2\epsilon} \ a$$

	C_{W}	$A_{ m W}$	$B_{ m W}$	$G_{ m W}$	$R_{ m W}$	$\langle au_{ m K3} angle$	$ \hspace{.05cm} \langle \mathcal{V} angle$
$\overline{\mathcal{P}_1}$	1/10	2/100	1	0.1398533	0.706811	3.89	107.3
\mathcal{P}_2	4/100	2/100	1	3.080548×10^{-2}	0.7071067	14.30	1000
\mathcal{P}_3	1.978/100	1.65/100	1.01	4.628858×10^{-3}	0.7070	168.03	5×10^4

	$\mathcal{P}_1 \mid$	$ \ 0.9457$	0.0
Cosmological observables:	\mathcal{P}_2	0.9437	0.0
observables.	\mathcal{P}_3	0.9457	0.0

	n_s	r	$\frac{dn_s}{d\ln k}$	$\Delta N_{ m CMB}^{ m PBH}$	$ P_k _{\mathrm{peak}}$
\mathcal{P}_1	0.9457	0.015	-0.0017	34.5	0.01365
\mathcal{P}_2	0.9437	0.015	-0.0017	34.5	0.03998
\mathcal{P}_3	0.9457	0.015	-0.0019	34.5	0.013341

constant roll appear due to the presence of extreme flat region causing the inflaton to brake upon reaching it

 $P_k \propto H^{|2\alpha+3|-1}a^{3+2\alpha+|3+2\alpha|}$ evolution $2\alpha+3<0$ $2\alpha+3>0$ $2\alpha+3>0$

Summary & Outlooks

- First string theory inflationary model

 Cosmological obs. at CMB scales
 - generates PBH at small distances scales
 - PBH formed in the low-mass region \Rightarrow significant fraction of DM

Relevant features of fibre models:

(i) Coeff. of potential depends on background fluxes & intersection numbers

- (ii) Potential enjoys approx. abelian re-scaling symmetry suppressing quantum corrections
- (iii) The contribution generating the near inflection point has been generated in [Cicoli, Ciupke, VAD, Guidetti, Muia, Shukla'17]

To do:

- Re-do analysis with $\delta_c \sim 0.5$, quantum diffusion & non-Gaussianities
- More general fibre inflation potential
- Consider formation in a matter-dominated period
- Find curvaton-like mechanism for PBH production

[Ando,Kinomata,Kawasaki,Mukaida,Yanagida]

Study oscillon scope collapse into BHs at the end of inflation

Gracias.