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dH*(j) = J)trR? + Z trF2 + 2b% (5) F?

® (&, Interactions in the Decoupling Limit

* g — oo while 9 finite, for a choice Jjo

dynamical &
non-dynamical £

" 1/9,% ~ Jo b =0-» b,;g = 0 -»[no G.-anomaly| after decoupling

- 1/9/?2; ~Jo-b.#0 > bg # 0 =»|non-zero (G.-anomaly

after decoupling

* Fine because G- gauge fields aren’t dynamical ('t Hooft anomaly)
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Decoupling Gravity in Sugra

Abelian gauge interaction

® U(1) Interaction in the Decoupling Limit

* Originally: anomaly free, — %ZMICI.? > 0
ZMﬂ+ b~ -b"| ... becomes non-positive upon decoupling
>0 <0

. anomaly is no longer cancelled

* U(l) cannot remain dynamical ('t Hooft anomaly)

® Worth Checking

= AB) anomalies remain cancelled since bg = ( and GS contributions to:
(@) GZ - G2 anomaly (~ b~ b= b - b)) doesn’t change
(b) G? - U(1)? anomaly (~ b;-b = b - b™) doesn’t change

» Giz and U(1)remain as a true global symmetry
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F-theory EFT

Physics via Geometry

6d EFT of F-theory

" [IB on B5 with varying axio-dilaton
= 6d N=(1,0) sugra effective physics

* Encoded in the internal geometry

EFT via Geometry

= Tensor fields > Cy = B* Aw,, with w, € H"'(B2); 14+ np = hbH(By)
» SO(1,n7)inner prod---> intersection form, Q.5 = / Wa A W3
= Anomaly coefficients -----» a®w, = Kp; bSw, = CK(7-ﬁ?’ane loci); b%w,, = C (“hight pairing”)
= Tensor mult VEVs - > J wa = J the Kahler form; normalized asvol;(Bs) =j-j =1
 Gauge couplings ......... , { L/gic oc vols (by)

1/g* o vol s (b)
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Revisiting the Sugra Results

Geometric interpretation via F-theory

Criterion for Being Dynamical in the Decoupling Limit

= s — oo with Mp fixed

= vol;(b’s) = 0 with vol;(B>) fixed; b’s need to be “contractible”

Geometric Intuition

= Bs may have both contractable curves and noncontractable ones

" bz can only be of the former type

= b should never be contractible as U(l) is bound to become a global symmetry

= U(l) anomaly equation gives a direct geometric clue

— Mumford’s contractibility criterion:

{C}} contract to point(s) = I;; = C; - C; negative (semi)definite

— b - b > 0 implies b is not contractible!

~ Z/\/lfﬁL
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Geometric Constraint in F-theory

“U(1) curves” are never contractible

1/g? = /Y [o(s)] Axo(s)] Ertheory imit — yo] ;(—7, (o (s) - o(s))

iLZ b € HQ(BQ)

(Non-)Contractibility of b?
» Suppose the gauge group is U(l) = b= 2Kp,+ 2m,.(S - Sp)

* Claim: K, is non-contracible

— Any base curve with C - C' < —3 supports a nonabelian gauge field [Morrison-Taylor 12]

— If all base curves have self-intersection bigger than -3, then I_(B2- [_(B2> 0

= Can also prove in the presence of G



Weaken U(1)

with gravity coupling fixed

[SJL—Lerche—Regalado—Weigand '18]
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Testing QG Conjectures in F-theory

WGC, SDC, ...

(SL)WGUCC: in the limit where U(1) is weak
= Can prove, for a general F-theory model with U(1), that a curve in B2 must srhink
= D3-wrapped string is tensionless and leads to infinite light particles

= Of the charged particles at each mass-level:

— the maximal charge is proportional to mass
— their counting is also given analytically (mirror symmetry + modular anomaly)

SDC

" The masses of those particles can be written in terms of the moduli space distance

= Observe that they are suppressed exponentially

Details in the Talk by T.Weigand

See also:
[talk by |.Valenzuela], [talk by Klaewer]
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THANK YOU




