Gravity and $\mathrm{U}(\mathrm{I})$ s in F-theory

1803.0'7998, 180'7.xxxxx
S.-d.L., W.Lerche, D.Regalado, T.Weigand

Seung-Joo Lee (CERN)

String Phenomenology, U. of Warsaw
4-July-2018

Outline

Introduction and Summary

Decoupling Gravity

- Supergravity perspective
- F-theory perspective

Weakening $U(1)$
Conlusions and Outlook

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting
max dim for an SCFT, quantum gravity properties persist, ...

When U(1) becomes weak
= Can it be weaker than gravity?Weak Gravity Conjecture [Arkani-Hamed et al. '06]

- Infinite light particles? Swampland Distance Conjecture [Ooguri-Vafa '06]

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting
max dim for an SCFT, quantum gravity properties persist, ...
- When gravity decouples
- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?
- When U(1) becomes weak
- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed ef al. '06]
- Infinite light particles? Swampland Distance Conjecture [Ooguri-Vafa '06]

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting
max dim for an SCFT, quantum gravity properties persist, ...
- When gravity decouples
- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?

When U(1) becomes weak

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles? Swampland Distance Conjecture [Ooguri-Vafa '06]

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting
max dim for an SCFT, quantum gravity properties persist, ...
- When gravity decouples
- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?

When U(1) becomes weak

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles? Swampland Distance Conjeciure [Ooguri-Vafa '06]

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting
max dim for an SCFT, quantum gravity properties persist, ...
- When gravity decouples
- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?
- When U(1) becomes weak
- Can it be weaker than gravity?

Weak Gravity Conjecture [Arkani-Hamed et al. '06]

- Infinite light particles?

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting
max dim for an SCFT, quantum gravity properties persist, ...
- When gravity decouples
- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?
- When U(1) becomes weak
- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles?

Introduction

F-theory vacua as quantum theories of gravity

- 6d EFTs of String/F-theory
- Controlled
more supersymmetries, geometries under better control, ...
- Interesting max dim for an SCFT, quantum gravity properties persist, ...
- When gravity decouples
- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?
- When U(1) becomes weak
- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles?

Swampland Distance Conjecture [Ooguri-Vafa '06]

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?

```
- U(I) gauge fields lead to gobal U(I) symmetries [SLL-Regalado-Weigand '18]
- Proven in two perspectives
    (a) Physics of supergravity
    (b) Geometry of string/F-theory
```

What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) rsIL-Lerche-Regalado-Weigand '187
- Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{P}}^{2}}$
- Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries [SJL-Regalado-Weigand '18]

What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string addears (lead to infinite light particles) [SIL-Lerche-Regalado-Weigand '187 - Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{Pl}}^{2}}$ - Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries [S JL -Regalado-Weigand ' 18]
- Proven in two perspectives
(a) Physics of supergravity
(b) Geometry of string/F-theory

What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18] "Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{Pl}}^{2}}$
- Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
(a) Physics of supergravity
(b) Geometry of string/F-theory
- What happens to (F-)EFT as $\mathrm{U}(1)$ gets weaker than gravity?
- A tensionless string appears (lead to infinite light particles) [sJL-Lerche-Regalado-Weigand '18] " Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{Pl}}^{2}}$ - Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?
- U(I) gauge fields lead to global U(I) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
(a) Physics of supergravity
(b) Geometry of string/F-theory
- What happens to (F-)EFT as U(1) gets weaker than gravity?
- A tensionless string appears (lead to infinite light particles) [sJL-Lerche-Regalado-Weigand '18]
"Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{Pl}}^{2}}$
" Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
(a) Physics of supergravity
(b) Geometry of string/F-theory
- What happens to (F-)EFT as U(1) gets weaker than gravity?
- A tensionless string appears (lead to infinite light particles) [sJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{Pl}}^{2}}$
- Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Summary

F-theoretic answers to the two questions

- What happens to U(1)s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
(a) Physics of supergravity
(b) Geometry of string/F-theory
- What happens to (F-)EFT as U(1) gets weaker than gravity?
- A tensionless string appears (lead to infinite light particles) [sJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma=\frac{c}{g M_{\mathrm{Pl}}^{2}}$
- Their masses are suppressed by $m \simeq m_{0} e^{-d}$

Decouple Gravity
 from Supergravity

[SJL-Regalado-Weigand '18]

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

Multiplet	Field Contents
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\prod G_{\kappa} \times U(1)^{r}$	

- Action (with $M_{\mathrm{Pl}}=1$)

Notations

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots \cdots$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{k}^{\alpha}}{\lambda_{k}} \omega_{Y}^{k}+2 b^{\alpha} \omega$
= $a_{,}^{\alpha} b_{k}^{\alpha}, b^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \ldots\left(1, n_{T}\right)$ vectors (indices α, β, \cdots contracted via $\left.\Omega_{\alpha \beta}\right)$
- $j^{\alpha} \ldots \ldots\left(1, n_{T}\right)$ vector with $j \cdot j=1\left(n_{T}\right.$ tensor-multipletVEVs)
- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots$ kinetic metric

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

- Action (with $M_{\mathrm{Pl}}=1$)

Notations

- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots$ kinetic metric

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\prod G_{\kappa} \times U(1)^{r}$		

- Action (with $M_{\mathrm{Pl}}=1$)

Notations

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\prod G_{\kappa} \times U(1) 火$		

- Action (with $M_{\mathrm{Pl}}=1$)

Notations

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\prod G_{\kappa} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

Notations

- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots$ kinetic metric

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\prod G_{\kappa} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1,5}} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} \beta j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa}-(2 j \cdot b) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

Notations

- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots$ kinetic metric

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\prod G_{\kappa} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1,5}} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa}-(2 j \cdot b) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

- Notations

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi G_{\kappa} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
& \int_{\mathbb{R}^{1,5}}\left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} \beta j^{\alpha} \wedge * d j^{\beta}\right. \\
&\left.-\sum \frac{2 j \cdot b_{k}}{\lambda_{k}} \operatorname{tr}\right] \\
&\left.-\frac{1}{2} \Omega_{\alpha \beta} \Omega^{\alpha} B^{\alpha} \wedge F_{k}\right)+(2 j \cdot b) F \wedge * F \\
&\left.X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

- Notations

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi G_{\kappa} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1,5}} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \cdot b_{k}}{\lambda_{k}} \operatorname{tr} \\
& -\frac{1}{2} \Omega_{\alpha \beta} \wedge * F_{k} \\
B^{\alpha} & \left.\wedge(2 j \cdot b)+X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

- Notations

- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots$ kinetic metric

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1}, 5} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \cdot b_{k}}{\lambda_{k}} \operatorname{tr} E_{\kappa} \wedge * F_{k}-(2 j \cdot b) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

- Notations
- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots \cdots$ tensors B^{α}

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

	Multiplet	Field Contents
1	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
n_{T}	Tensor	$\left(B_{\mu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
	$=\Pi$ G G_{n}	(1)

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1}, 5} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}\right. \\
& -\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta} \\
& -\sum \frac{2 j \cdot b_{k}}{\lambda_{k}} \mathrm{tr} \\
& -\frac{1}{2} \Omega_{\alpha \beta} \wedge * F_{k} \\
B^{\alpha} & \left.(2 j \cdot b) X^{\beta}\right)+S_{\mathrm{hyp}}
\end{aligned}
$$

- Notations
- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots \cdots$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \omega$

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

n_{T}	Multiplet	Field Contents
	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi G_{n} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1}, 5} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}\right. \\
& -\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta} \\
& - \sum \frac { 2 j \cdot b _ { k } } { \lambda _ { k } } \mathrm { tr } \longdiv { F _ { k } \wedge * F _ { k } } - (2 j \cdot b) F * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\mathrm{hyp}}
\end{aligned}
$$

- Notations

CS forms

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots \cdots$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \stackrel{\omega}{\omega}_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \stackrel{\downarrow}{\omega}$

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

n_{T}	Multiplet	Field Contents
	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi$ G $G_{6} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1,5}} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa}-(2 j \cdot b) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\mathrm{hyp}}
\end{aligned}
$$

- Notations

CS forms

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots>$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \omega$
- $a^{\alpha}, b_{\kappa}^{\alpha}, b^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \rightarrow S O\left(1, n_{T}\right)$ vectors (indices α, β, \cdots contracted via $\Omega_{\alpha \beta}$)

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

n_{T}	Multiplet	Field Contents
	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi$ G $G_{6} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
& \int_{\mathbb{R}^{1}, 5}\left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \square b_{k}}{\lambda_{\kappa}} \operatorname{tr} E_{\kappa} \wedge * F_{k}-(2 j \boxminus \vec{b}) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

- Notations

CS forms

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots>$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \omega$
- $a^{\alpha}, b_{\kappa}^{\alpha}, b^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \rightarrow S O\left(1, n_{T}\right)$ vectors (indices α, β, \cdots contracted via $\Omega_{\alpha \beta}$)

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

n_{T}	Multiplet	Field Contents
	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi G_{n} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1,5}} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& \left.-\sum \frac{2 j \cdot b_{k}}{\lambda_{\kappa}} \operatorname{tr}\right]{ }_{F_{\kappa} \wedge * F_{\kappa}}-(2 j \cdot b) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\text {hyp }}
\end{aligned}
$$

- Notations

CS forms

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots \cdots$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \omega$
- $a^{\alpha}, b_{\kappa}^{\alpha}, b^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \rightarrow S O\left(1, n_{T}\right)$ vectors (indices α, β, \cdots contracted via $\Omega_{\alpha \beta}$)
- $j^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots\left(1, n_{T}\right)$ vector with $j \cdot j=1$ (n_{T} tensor-multiplet VEVs)

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

n_{T}	Multiplet	Field Contents
	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi$ G $G_{6} \times U(1)$		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1}, 5} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& \left.-\sum \frac{2 j \cdot b_{\kappa}}{\lambda_{\kappa}} \mathrm{tr}\right] E_{\kappa} \wedge * F_{\kappa} \\
& -(2 j \cdot b) F * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\mathrm{hyp}}
\end{aligned}
$$

- Notations

CS forms

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots>$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \omega$
- $a^{\alpha}, b_{\kappa}^{\alpha}, b^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \ggg\left(1, n_{T}\right)$ vectors (indices α, β, \cdots contracted via $\Omega_{\alpha \beta}$)
- $j^{\alpha} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots\left(1, n_{T}\right)$ vector with $j \cdot j=1$ (n_{T} tensor-multiplet VEVs)
- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots>$ kinetic metric

6D $N=(1,0)$ Supergravity

Basic Setup

- Multiplets

n_{T}	Multiplet	Field Contents
	Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
	Tensor	$\left(B_{\mu \nu}^{-}, \chi^{-}, \phi\right)$
	Vector	$\left(A_{\mu}, \lambda^{+}\right)$
	Hyper	$\left(\psi^{-}, 4 \varphi\right)$
$G=\Pi G_{\kappa} \times$ U(1)		

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
& \int_{\mathbb{R}^{1}, 5}\left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
&-\sum \frac{2 j \cdot b_{k}}{\lambda_{k}} \mathrm{tr} \\
& F_{k} \wedge * F_{k} \\
&-(2 j \cdot b)\left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\mathrm{hyp}}
\end{aligned}
$$

- Notations

CS forms

- $\alpha, \beta=0, \cdots, n_{T} \cdots \cdots>$ tensors B^{α} with $H^{\alpha}=d B^{\alpha}+\frac{1}{2} a^{\alpha} \omega_{L}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \omega_{Y}^{\kappa}+2 b^{\alpha} \omega$
- $a^{\alpha}, b_{\kappa}^{\alpha}, b^{\alpha} \cdots \cdots \ldots \ldots \ldots \ldots \ldots\left(1, n_{T}\right)$ vectors (indices α, β, \cdots contracted via $\Omega_{\alpha \beta}$)
- $j^{\alpha} \ldots \ldots \ldots \ldots \ldots . ~ S O\left(1, ~ n_{T}\right)$ vector with $j \cdot j=1$ (n_{T} tensor-multipletVEVs)
- $g_{\alpha \beta}=2 j_{\alpha} j_{\beta}-\Omega_{\alpha \beta} \cdots$... kinetic metric

6D $N=(1,0)$ Supergravity

Anomaly cancellation

- Anomaly cancellation
- Coupling of tensors involves $X_{4}^{\alpha}=\frac{1}{2} a^{\alpha} \operatorname{tr} R^{2}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{\alpha} F^{2}$
- One-loop anomalies are cancelled
- Anomaly equations

6D $N=(1,0)$ Supergravity

Anomaly cancellation

- Anomaly cancellation
- Coupling of tensors involves $X_{4}^{\alpha}=\frac{1}{2} a^{\alpha} \operatorname{tr} R^{2}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{\alpha} F^{2}$
- One-loop anomalies are cancelled $I_{8}^{1-\text { loop }}=\frac{1}{32} \Omega_{\alpha \beta} X^{\alpha} \wedge X^{\beta}$

6D $N=(1,0)$ Supergravity

Anomaly cancellation

- Anomaly cancellation
- Coupling of tensors involves $X_{4}^{\alpha}=\frac{1}{2} a^{\alpha} \operatorname{tr} R^{2}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{\alpha} F^{2}$
- One-loop anomalies are cancelled

$$
I_{8}^{1-\text { loop }}=\frac{1}{32} \Omega_{\alpha \beta} X^{\alpha} \wedge X^{\beta}
$$

- Anomaly equations

$$
\begin{array}{rlr}
\mathrm{b}_{\kappa} \cdot \mathrm{b}_{\kappa} & =\frac{1}{3} \lambda_{\kappa}^{2}\left(\sum \mathcal{M}_{I}^{\kappa} C_{\kappa}^{I}-C_{\mathrm{Adj}_{\kappa}}\right) & {\left[G_{\kappa}^{4}\right]} \\
\mathrm{b}_{\kappa} \cdot \mathrm{b}_{\mu} & =\lambda_{\kappa} \lambda_{\mu} \sum \mathcal{M}_{I}^{\kappa \mu} A_{\kappa}^{I} A_{\mu}^{I} & {\left[G_{\kappa}^{2} \cdot G_{\mu}^{2}\right]} \\
0 & =\sum \mathcal{M}_{I}^{\kappa} E_{\kappa}^{I} q_{I} & {\left[G_{\kappa}^{3} \cdot U(1)\right]} \\
\mathrm{b}_{\kappa} \cdot \mathrm{b} & =\lambda_{k} \sum \mathcal{M}_{I}^{\kappa} A_{\kappa}^{I} q_{I}^{2} & {\left[G_{\kappa}^{2} \cdot U(1)^{2}\right]} \\
\mathrm{b} \cdot \mathrm{~b} & =\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4} & {\left[U(1)^{4}\right]} \tag{1}
\end{array}
$$

6D $N=(1,0)$ Supergravity

Anomaly cancellation

- Anomaly cancellation
- Coupling of tensors involves $X_{4}^{\alpha}=\frac{1}{2} a^{\alpha} \operatorname{tr} R^{2}+\sum \frac{2 b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{\alpha} F^{2}$
- One-loop anomalies are cancelled

$$
I_{8}^{1-\text { loop }}=\frac{1}{32} \Omega_{\alpha \beta} X^{\alpha} \wedge X^{\beta}
$$

- Anomaly equations

$$
\begin{array}{rlr}
\mathrm{b}_{\kappa} \cdot \mathrm{b}_{\kappa} & =\frac{1}{3} \lambda_{\kappa}^{2}\left(\sum \mathcal{M}_{I}^{\kappa} C_{\kappa}^{I}-C_{\mathrm{Adj}_{\kappa}}\right) & {\left[G_{\kappa}^{4}\right]} \\
\mathrm{b}_{\kappa} \cdot \mathrm{b}_{\mu} & =\lambda_{\kappa} \lambda_{\mu} \sum \mathcal{M}_{I}^{\kappa \mu} A_{\kappa}^{I} A_{\mu}^{I} & {\left[G_{\kappa}^{2} \cdot G_{\mu}^{2}\right]} \\
0 & =\sum \mathcal{M}_{I}^{\kappa} E_{\kappa}^{I} q_{I} & {\left[G_{\kappa}^{3} \cdot U(1)\right]} \\
\mathrm{b}_{\kappa} \cdot \mathrm{b} & =\lambda_{k} \sum \mathcal{M}_{I}^{\kappa} A_{\kappa}^{I} q_{I}^{2} & {\left[G_{\kappa}^{2} \cdot U(1)^{2}\right]} \\
\mathrm{b} \cdot \mathrm{~b} & =\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4} & {\left[U(1)^{4}\right]} \tag{1}
\end{array}
$$

where
M's are multiplicities;
A's, C's, and E's are contants.

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)_{\beta}^{\alpha}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$

- G_{κ} Interactions in the Decoupling Limit
- $g_{\widehat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)_{\beta}^{\alpha}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself

- G_{κ} Interactions in the Decoupling Limit
- $g_{\widehat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)_{\beta}^{\alpha}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\mathcal{V}^{+} \oplus \mathcal{V}^{-}$
- G_{κ} Interactions in the Decoupling Limit
- $g_{\widehat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- G_{κ} Interactions in the Decoupling Limit
- $g_{\widehat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit
- $g_{\widehat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

" Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- G_{κ} Interactions in the Decoupling Limit
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

" Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)_{\beta}^{\alpha}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit
- $g_{\widehat{k}} \rightarrow \infty$ while $g_{\check{k}}$ finite, for a choice j_{0}

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)_{\beta}^{\alpha}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}
$\cdot 1 / g_{\hat{\kappa}}^{2} \sim j_{0} \cdot b_{\hat{\kappa}}=0 \cdots b_{\hat{\kappa}}^{+}=0 \cdots$ no $G_{\hat{\kappa}}$-anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

6D $N=(1,0)$ Supergravity

Basic Setup

- Action (with $M_{\mathrm{Pl}}=1$)

$$
\begin{aligned}
\int_{\mathbb{R}^{1,5}} & \left(\frac{1}{2} R * 1-\frac{1}{4} g_{\alpha \beta} H^{\alpha} \wedge * H^{\beta}-\frac{1}{2} g_{\alpha \beta} d j^{\alpha} \wedge * d j^{\beta}\right. \\
& -\sum \frac{2 j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa}-(2 j \cdot b) F \wedge * F \\
& \left.-\frac{1}{2} \Omega_{\alpha \beta} B^{\alpha} \wedge X^{\beta}\right)+S_{\mathrm{hyp}}
\end{aligned}
$$

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}
$\cdot 1 / g_{\hat{\kappa}}^{2} \sim j_{0} \cdot b_{\hat{\kappa}}=0 \cdots b_{\hat{\kappa}}^{+}=0 \cdots$ no $G_{\hat{\kappa}}$-anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}
$-1 / g_{\hat{\kappa}}^{2} \sim j_{0} \cdot b_{\hat{\kappa}}=0 \rightarrow b_{\hat{\kappa}}^{+}=0 \rightarrow$ no $G_{\hat{\kappa}}$-anomaly after decoupling

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}
$-1 / g_{\hat{\kappa}}^{2} \sim j_{0} \cdot b_{\hat{\kappa}}=0 \rightarrow b_{\hat{\kappa}}^{+}=0 \rightarrow$ no $G_{\hat{\kappa}}$-anomaly after decoupling
$\cdot 1 / g_{\overleftarrow{K}}^{2} \sim j_{0} \cdot b_{\check{K}} \neq 0 \rightarrow b_{\overleftarrow{\kappa}}^{+} \neq 0 \cdots$ non-zero G_{κ}-anomaly after decoupling
" Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)^{\alpha}{ }_{\beta}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}
$-1 / g_{\hat{\kappa}}^{2} \sim j_{0} \cdot b_{\hat{\kappa}}=0 \rightarrow b_{\hat{\kappa}}^{+}=0 \rightarrow$ no $G_{\hat{\kappa}}$-anomaly after decoupling
$\cdot 1 / g_{\check{\kappa}}^{2} \sim j_{0} \cdot b_{\check{\kappa}} \neq 0 \cdots b_{\check{\kappa}}^{+} \neq 0 \cdots$ non-zero $G_{\check{\nwarrow}}$-anomaly after decoupling

Decoupling Gravity in Sugra

Nonabelian gauge interaction

- Decomposition of $\operatorname{SO}\left(1, \mathbf{n}_{\mathbf{T}}\right)$ Vector Space
- (Anti-)Self-duality: $* H^{\alpha}=D_{\beta}^{\alpha} H^{\beta}$ where $D(j)_{\beta}^{\alpha}:=2 j^{\alpha} j_{\beta}-\delta_{\beta}^{\alpha}$
- $D(j) \sim \operatorname{Diag}(+1,-1, \ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1, n_{T}}=\underset{\longrightarrow \operatorname{Span}\langle j\rangle}{\mathcal{V}^{+}} \oplus \mathcal{V}^{-}$
- $v=v^{+}(j)+v^{-}(j)$
$d H^{ \pm}(j)=\frac{1}{2} a^{ \pm}(j) \operatorname{tr} R^{2}+\sum_{\kappa} \frac{2 b_{\kappa}^{ \pm}(j)}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^{2}+2 b^{ \pm}(j) F^{2}$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit $\quad \kappa\left\{\begin{array}{l}\text { dynamical } \hat{\kappa} \\ \text { non-dynamical } \check{\kappa}\end{array}\right.$
- $g_{\hat{\kappa}} \rightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_{0}
$-1 / g_{\hat{\kappa}}^{2} \sim j_{0} \cdot b_{\hat{\kappa}}=0 \rightarrow b_{\hat{\kappa}}^{+}=0 \cdots$ no $G_{\hat{\kappa}}$-anomaly after decoupling
$-1 / g_{\overparen{\kappa}}^{2} \sim j_{0} \cdot b_{\check{\kappa}} \neq 0 \cdots b_{\check{\kappa}}^{+} \neq 0 \cdots$ non-zero $G_{\check{\nwarrow}}$-anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Decoupling Gravity in Sugra

Abelian gauge interaction

- $\mathbf{U (1)}$ Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
anomaly is no longer cancelled
- U(I) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{\kappa}}^{2} \cdot G_{\check{\kappa}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{k}}=b_{\hat{\kappa}}^{-} \cdot b_{\check{\kappa}}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\check{\kappa}}$ and $U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- $\mathbf{U (1)}$ Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
$\cdot b \cdot b=b^{+} \cdot b^{+}+b^{-} \cdot b^{-}$ becomes non-positive upon decoupling anomaly is no longer cancelled
= $U(1)$ cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{\kappa}}^{2} \cdot G_{\overparen{\kappa}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{\kappa}}=b_{\hat{\kappa}}^{-} \cdot b_{\check{\kappa}}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\check{\prime}}$ and $U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
- $b \cdot b=\frac{b^{+} \cdot b^{+}}{\geq 0}+\frac{b^{-} \cdot b^{-}}{\leq 0}$ becomes non-positive upon decoupling anomaly is no longer cancelled
= $U(1)$ cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{k}}^{2} \cdot G_{\hat{k}}^{2}$ anomaly $\left(\sim b_{\hat{k}} \cdot b_{\check{k}}=b_{\hat{k}}^{-} \cdot b_{-}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- G_{r} and $U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- $\mathbf{U}(1)$ Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
- $b \cdot b=\frac{b^{\top}+b^{+}}{\geq 0}+\frac{b^{-} \cdot b^{-}}{\leq 0} \ldots$ becomes non-positive upon decoupling anomaly is no longer cancelled
= $U(1)$ cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{\kappa}}^{2} \cdot G_{\hat{k}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{k}}=b_{\hat{\kappa}}^{-} \cdot b_{\check{k}}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\check{K}}$ and $U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
- $b \cdot b=\frac{b^{\top}+b^{+}}{\geq 0}+\frac{b^{-} \cdot b^{-}}{\leq 0} \ldots$ becomes non-positive upon decoupling
- U(I) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{\kappa}}^{2} \cdot G_{\check{\kappa}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{\kappa}}=b_{\hat{\kappa}}^{-} \cdot b_{\check{\kappa}}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\check{K}}$ and $U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- $\mathbf{U}(1)$ Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
- $b \cdot b=\frac{b^{\top}<b^{+}}{\geq 0}+\frac{b^{-} \cdot b^{-}}{\leq 0} \ldots$ becomes non-positive upon decoupling ... anomaly is no longer cancelled
- U(I) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{\kappa}}^{2} \cdot G_{\tilde{\kappa}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{\kappa}}=b_{\hat{\kappa}}^{-} \cdot b_{\tilde{\kappa}}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\text {に }}^{\text {and }} U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
- $b \cdot b=\frac{b^{\top}<b^{+}}{\geq 0}+\frac{b^{-} \cdot b^{-}}{\leq 0} \ldots$ becomes non-positive upon decoupling ... anomaly is no longer cancelled
- U(I) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to: (a) $G_{\hat{\kappa}}^{2} \cdot G_{\check{\kappa}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{\kappa}}=b_{\hat{\kappa}}^{-} \cdot b_{\check{\kappa}}^{-}\right)$doesn't change (b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\check{K}}$ and $U(1)$ remain as a true global symmetry

Decoupling Gravity in Sugra

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
- Originally: anomaly free, $b \cdot b=\frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4}>0$
- $b \cdot b=\frac{b^{-}>b^{+}}{\geq 0}+\frac{b^{-} \cdot b^{-}}{\leq 0} \ldots$ becomes non-positive upon decoupling ... anomaly is no longer cancelled
- $\mathrm{U}(\mathrm{I})$ cannot remain dynamical ('t Hooft anomaly)
- Worth Checking
- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^{+}=0$ and GS contributions to:
(a) $G_{\hat{\kappa}}^{2} \cdot G_{\check{\kappa}}^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b_{\check{\kappa}}=b_{\hat{\kappa}}^{-} \cdot b_{\check{\kappa}}^{-}\right)$doesn't change
(b) $G_{\hat{\kappa}}^{2} \cdot U(1)^{2}$ anomaly $\left(\sim b_{\hat{\kappa}} \cdot b=b_{\hat{\kappa}}^{-} \cdot b^{-}\right)$doesn't change
- $G_{\check{\nwarrow}}$ and $U(1)$ remain as a true global symmetry

Decouple Gravity
 from String/F-theory EFT

[SJL-Regalado-Weigand '18]

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- 6d $\mathrm{N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry

EFT via Geometry

- Tensor fields
- $S O\left(1, n_{T}\right)$ inner proc
- Anomaly coefficients
- Tensor mult VEVs
- Gauge couplings

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- $6 \mathrm{~d} \mathrm{~N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry
- EFT via Geometry
- Tensor fields
$\Rightarrow C_{4}=B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}\left(B_{2}\right) ; 1+n_{T}=h^{1,1}\left(B_{2}\right)$
- $S O\left(1, n_{T}\right)$ inner prod.
- Anomaly coefficients
- Tensor mult VEVs
- Gauge couplings

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- $6 \mathrm{~d} \mathrm{~N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry
- EFT via Geometry
- Tensor fields
$C_{4}=B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}\left(B_{2}\right) ; 1+n_{T}=h^{1,1}\left(B_{2}\right)$
- $S O\left(1, n_{T}\right)$ inner prod.... intersection form, $\Omega_{\alpha \beta}=\int_{B_{2}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $\cdots \cdots a^{\alpha} w_{\alpha}=K_{B} ; b_{\kappa}^{\alpha} w_{\alpha}=C_{\kappa}\left(7\right.$-brane loci) ; $b^{\alpha} w_{\alpha}=C$ ("hight pairing")
- Tensor mult VEVs $\cdots \ldots \ldots . . j^{\alpha} w_{\alpha}=J$, the Kahler form; normalized as vol $J\left(B_{2}\right)=j \cdot j=1$
- Gauge couplings

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- $6 \mathrm{~d} \mathrm{~N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry
- EFT via Geometry
- Tensor fields $C_{4}=B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}\left(B_{2}\right) ; 1+n_{T}=h^{1,1}\left(B_{2}\right)$
- $S O\left(1, n_{T}\right)$ inner prod \cdots intersection form, $\Omega_{\alpha \beta}=\int_{B_{2}} w_{\alpha} \wedge w_{\beta}$
" Anomaly coefficients $\cdots \cdots a^{\alpha} w_{\alpha}=K_{B} ; b_{k}^{\alpha} w_{\alpha}=C_{k}\left(7\right.$-brane loci); $b^{\alpha} w_{\alpha}=C$ ("hight pairing")
- Tensor mult VEVs $\cdots \cdots \cdots \cdots j^{\alpha} w_{\alpha}=J$, the Kahler form; normalized as $\operatorname{vol}_{J}\left(B_{2}\right)=j \cdot j=1$
- Gauge couplings

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- $6 \mathrm{~d} \mathrm{~N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry

- EFT via Geometry

- Tensor fields $C_{4}=B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}\left(B_{2}\right) ; 1+n_{T}=h^{1,1}\left(B_{2}\right)$
- $S O\left(1, n_{T}\right)$ inner prod \cdots intersection form, $\Omega_{\alpha \beta}=\int_{B_{2}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $\cdots \cdots a^{\alpha} w_{\alpha}=K_{B} ; b_{\kappa}^{\alpha} w_{\alpha}=C_{\kappa}\left(7\right.$-brane loci); $b^{\alpha} w_{\alpha}=C$ ("hight pairing")
- Gauge couplings

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- $6 \mathrm{~d} \mathrm{~N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry

- EFT via Geometry

- Tensor fields $C_{4}=B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}\left(B_{2}\right) ; 1+n_{T}=h^{1,1}\left(B_{2}\right)$
- $S O\left(1, n_{T}\right)$ inner prod \cdots intersection form, $\Omega_{\alpha \beta}=\int_{B_{2}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $\cdots \cdots a^{\alpha} w_{\alpha}=K_{B} ; b_{\kappa}^{\alpha} w_{\alpha}=C_{\kappa}\left(7\right.$-brane loci); $b^{\alpha} w_{\alpha}=C$ ("hight pairing")
- Tensor mult VEVs $\cdots \cdots \cdots \cdots j^{\alpha} w_{\alpha}=J$, the Kahler form; normalized as $\operatorname{vol}_{J}\left(B_{2}\right)=j \cdot j=1$
- Gauge couplings

F-theory EFT

Physics via Geometry

- 6d EFT of F-theory
- IIB on B_{2} with varying axio-dilaton
- $6 \mathrm{~d} \mathrm{~N}=(1,0)$ sugra effective physics
- Encoded in the internal geometry

- EFT via Geometry

- Tensor fields

$$
C_{4}=B^{\alpha} \wedge w_{\alpha} \text { with } w_{\alpha} \in H^{1,1}\left(B_{2}\right) ; 1+n_{T}=h^{1,1}\left(B_{2}\right)
$$

- $S O\left(1, n_{T}\right)$ inner prod $\cdots>$ intersection form, $\Omega_{\alpha \beta}=\int_{B_{2}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $\cdots \cdots a^{\alpha} w_{\alpha}=K_{B} ; b_{\kappa}^{\alpha} w_{\alpha}=C_{\kappa}\left(7\right.$-brane loci); $b^{\alpha} w_{\alpha}=C$ ("hight pairing")
- Tensor mult VEVs $\cdots \ldots \ldots \ldots j^{\alpha} w_{\alpha}=J$, the Kahler form; normalized as $\operatorname{vol}_{J}\left(B_{2}\right)=j \cdot j=1$
- Gauge couplings $\left\{\begin{array}{l}1 / g_{\kappa}^{2} \propto \operatorname{vol}_{J}\left(b_{\kappa}\right) \\ 1 / g^{2} \propto \operatorname{vol}_{J}(b)\end{array}\right.$

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
" $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"
Geometric Intuition
- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:
\square
- $b \cdot b>0$ implies b is not contractible!

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed b 's need to be "contractible"

Geometric Intuition

- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{r}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:
\square
- $b \cdot b>0$ implies b is not contractible!

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"

Geometric Intuition

- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{r}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:
\square
- $b \cdot b>0$ implies b is not contractible!

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"
- Geometric Intuition
- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:
\square
- $b \cdot b>0$ implies b is not contractible!

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"
- Geometric Intuition
- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:
\square

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"
- Geometric Intuition
- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as $\mathrm{U}(\mathrm{I})$ is bound to become a global symmetry
- $\cup(I)$ anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:
\square

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"
- Geometric Intuition
- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- $\mathrm{U}(\mathrm{I})$ anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:

$$
\left\{C_{i}\right\} \text { contract to point(s) } \Rightarrow I_{i j}=C_{i} \cdot C_{j} \text { negative (semi)definite }
$$

- $b \cdot b>0$ implies b is not contractible!

Revisiting the Sugra Results

Geometric interpretation via F-theory

- Criterion for Being Dynamical in the Decoupling Limit
- g 's $\rightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_{J}(b$'s $)=0$ with $\operatorname{vol}_{J}\left(B_{2}\right)$ fixed; b 's need to be "contractible"
- Geometric Intuition
- B_{2} may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as $U(I)$ is bound to become a global symmetry
- $\mathrm{U}(\mathrm{I})$ anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:

$$
\left\{C_{i}\right\} \text { contract to point(s) } \Rightarrow I_{i j}=C_{i} \cdot C_{j} \text { negative (semi)definite }
$$

- $b \cdot b>0$ implies b is not contractible!
$\sim \sum \mathcal{M}_{I} q_{I}^{A}$

Geometric Constraint in F-theory

" $U(1)$ curves" are never contractible

- Rudiments
- An elliptic Calabi-Yau 3-fold, $\pi: Y_{3} \rightarrow B_{2}$, as IIB/F-theory background
- G_{k} : degenerate fibers along curves $b_{k} \in H_{2}\left(B_{2}\right)$
- $U(1)$: an extra section $S \in H_{4}\left(\hat{Y}_{3}\right)$ (in addition to the zero-section S_{0})
- U(I) gauge coupling
$-C_{3}=A_{D}[D]+\cdots$, where $[D] \in H^{1,1}\left(\hat{Y}_{3}\right)$

$$
1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right.
$$

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

- Rudiments

```
- An elliptic Calabi-Yau 3-fold, \pi: Y 
- }\mp@subsup{G}{\kappa}{}\mathrm{ : degenerate fibers along curves b}\mp@subsup{b}{\kappa}{}\in\mp@subsup{H}{2}{(}(\mp@subsup{B}{2}{}
- U(1): an extra section S\inH4(\mp@subsup{Y}{3}{}) (in addition to the zero-section S S )
- U(I) gauge coupling
- C C = A D [D] +\cdots, where [D] 仵,1,1}(\mp@subsup{\hat{Y}}{3}{}
```


Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{aligned}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{aligned}
$$

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|ll|}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{\#}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\cup(1) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
—Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12] - If all base curves have self-intersection bigger than -3 , then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$ - Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|r}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I})$ \qquad
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
—Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12] - If all base curves have self-intersection bigger than -3, then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$ - Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|r}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
—Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$
- Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|r}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
- Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$
- Can also prove in the presence of G_{k}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|r}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
- Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3 , then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$?
- Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|r}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
- Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3 , then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$!
- Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{aligned}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{=}: b \in H_{2}\left(B_{2}\right)
\end{aligned}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
- If all base curves have self-intersection bigger than -3 , then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$!
- Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{array}{|ll|}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\underline{\#}: b \in H_{2}\left(B_{2}\right)
\end{array}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
-Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3 , then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$
- Can also prove in the presence of G_{κ}

Geometric Constraint in F-theory

" $\mathrm{U}(1)$ curves" are never contractible

$$
\begin{aligned}
\hline 1 / g^{2}=\int_{\hat{Y}_{3}}[\sigma(s)] \wedge *[\sigma(s)] \quad \xrightarrow{\text { F-theory limit }} \operatorname{vol}_{J}\left(-\pi_{*}(\sigma(s) \cdot \sigma(s))\right. \\
\boxed{y}: b \in H_{2}\left(B_{2}\right)
\end{aligned}
$$

- (Non-)Contractibility of \mathbf{b} ?
- Suppose the gauge group is $\mathrm{U}(\mathrm{I}) \Rightarrow b=2 \bar{K}_{B_{2}}+2 \pi_{*}\left(S \cdot S_{0}\right)$
- Claim: $\bar{K}_{B_{2}}$ is non-contracible
-Any base curve with $C \cdot C \leq-3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3 , then $\bar{K}_{B_{2}} \cdot \bar{K}_{B_{2}}>0$
- Can also prove in the presence of G_{κ}

Weaken U(1)

with gravity coupling fixed

[SJL-Lerche-Regalado-Weigand '18]

Testing QG Conjectures in F-theory WGC, SDC, ...

(sL)WGC: in the limit where $U(1)$ is weak

- Can prove, for a general F-theory model with $\cup(I)$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level.
- the maximal charge is proportional to mass
- their counting is also given analytically
- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory
 WGC, SDC, ...

(SL)WGC: in the limit where $U(1)$ is weak

- Can prove, for a general F-theory model with $\mathrm{U}(\mathrm{I})$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
_ the maximal charge is proportional to mass
__ their counting is also given analytically
- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory

WGC, SDC, ...

- (SL)WGC: in the limit where $U(1)$ is weak
- Can prove, for a general F-theory model with $\mathrm{U}(\mathrm{I})$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
_ the maximal charge is proportional to mass
_ their counting is also given analytically
- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory

WGC, SDC, ...

- (SL)WGC: in the limit where $U(1)$ is weak
- Can prove, for a general F-theory model with $\mathrm{U}(\mathrm{I})$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically
- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory

WGC, SDC, ...

- (SL)WGC: in the limit where $U(1)$ is weak
- Can prove, for a general F-theory model with $\mathrm{U}(\mathrm{I})$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically (mirror symmetry + modular anomaly)

Testing QG Conjectures in F-theory

WGC, SDC, ...

- (SL)WGC: in the limit where $U(1)$ is weak
- Can prove, for a general F-theory model with $U(I)$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically (mirror symmetry + modular anomaly)
- SDC
- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory

WGC, SDC, ...

- (SL)WGC: in the limit where $U(1)$ is weak
- Can prove, for a general F-theory model with $U(I)$, that a curve in B_{2} must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically (mirror symmetry + modular anomaly)
- SDC
- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Details in the Talk by T.Weigand

Conclusions

- What happens to $U(1)$ s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries
- at the SCFT level, they are the flavor $\mathrm{U}(\mathrm{I})$ s
- Proven independently via physics and via mathematics
- What happens to (F-)EFT as U(1) gets weaker than gravity?
- Infinite tower of massless particles arise from a tensionless string
- They support some of the quantum gravity conjectures

Conclusions

- What happens to $U(1)$ s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries
- at the SCFT level, they are the flavor $\mathrm{U}(\mathrm{I})$ s
- Proven independently via physics and via mathematics
- What happens to (F-)EFT as U(1) gets weaker than gravity?
- Infinite tower of massless particles arise from a tensionless string
- They support some of the quantum gravity conjectures
Outlook
- Multiple U(1)s?
- Other dimensions?
- Relation to the other approaches?

Conclusions

- What happens to $U(1)$ s as gravity is decoupled?
- $\mathrm{U}(\mathrm{I})$ gauge fields lead to global $\mathrm{U}(\mathrm{I})$ symmetries
- at the SCFT level, they are the flavor $\mathrm{U}(\mathrm{I})$ s
- Proven independently via physics and via mathematics
- What happens to (F-)EFT as U(1) gets weaker than gravity?
- Infinite tower of massless particles arise from a tensionless string
- They support some of the quantum gravity conjectures
Outlook
- Multiple U(1)s?
- Other dimensions?
- Relation to the other approaches?

