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Introduction 
F-theory vacua as quantum theories of gravity

• 6d EFTs of String/F-theory  
· Controlled  
 more supersymmetries,  geometries under better control, …  
· Interesting 
 max dim for an SCFT,  quantum gravity properties persist, … 

• When gravity decouples 
· SCFTs associated with nonabelian G [Heckman-Morrison-Vafa ’15]  
· What about U(1)s?  

• When U(1) becomes weak 
· Can it be weaker than gravity?     .  .  .  .  .  .   Weak Gravity Conjecture [Arkani-Hamed et al. ’06]  
· Infinite light particles?     .  .  .  .  .  .  .  .  .  .  .   Swampland Distance Conjecture  [Ooguri-Vafa ’06]
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Summary 
F-theoretic answers to the two questions

• What happens to U(1)s as gravity is decoupled?  
· U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand ’18]  

· Proven in two perspectives 
   (a) Physics of supergravity  
   (b) Geometry of string/F-theory  

• What happens to (F-)EFT as U(1) gets weaker than gravity? 
· A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand ’18]  
· Amogst them are particles with               for each charge, where   
· Their masses are suppressed by m ' m0e

�d

q � �m � =
c

gM2
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Decouple Gravity  
from Supergravity  

[SJL—Regalado—Weigand ’18]



6D N=(1,0) Supergravity 
Basic Setup

• Multiplets

– int’ly, for non-ab g. thy: with 8 susies, dof needed to make it UV comp isn’t nec. gravit’l

⇤ may contain asd tensors coupl to strings

⇤ in the pot. dang strong coupl, these strings are tensionless, furnish infly many new dofs

⇤ leads to a conjectured non-triv UV fixed point (w/o grav. dof)

– for ab g. thy?

⇤ believed that the existence of UV fixed pt is intimately rel. to the non-ab nature (despite

little explicit knowledge of microscopic physics of 6d N = (1, 0) SCFTs)

⇤ then, ab thy UV completed by grav itself as in 4d, unless emb. in non-ab thy at high E

• One of the purposes of this work:

– Show this in two perspectives: phys of sugra and geom of string theory

– and then Analayze its consequences for ab symmetries of 6d SCFTs

2 6d N = (1, 0) Supergravity

2.1 Sugra Bgrd

• Multiplets:

Multiplet Field Contents

Gravity (gµ⌫ , +

µ , B
+

µ⌫)
Tensor (B�

µ⌫ ,�
�,�)

Vector (Aµ,�+)
Hyper ( �, 4')

Half-hyper ( �
R , 2')

Table 1: The massless multiplets of 6d N = (1, 0) sugra.

• (Pseudo-)Action: in the frame where M
Pl

= 1

S =

Z

R1,5

1

2
R ? 1� 1

4
g↵�H

↵ ^ ?H� � 1

2
⌦↵�B

↵ ^X�
4

� 1

2
g↵�dj

↵ ^ ?dj� (2.1)

�
X



(2j · b) 1
�

trF ^ ?F �
X

m,n

(2j · bmn)trF
m ^ ?F n (2.2)

+S
hyper

(2.3)

2

• Notations 
·                               tensors       with  
·                                                       vectors (indices              contracted via       )  
·                                                 vector with              (      tensor-multiplet VEVs)  
·                                     kinetic metric  

• Action (with                  )MPl = 1
Z

R1,5

⇣1
2
R ⇤ 1� 1

4
g↵�H

↵ ^ ⇤H� � 1

2
g↵�dj

↵ ^ ⇤dj�

�
X 2j · b

�
trF ^ ⇤F � (2j · b)F ^ ⇤F

� 1

2
⌦↵�B

↵ ^X�
⌘
+ Shyp

T-mults and g.gp G =
Q

G ⇥ U(1)

↵,� = 0, · · · , nT B↵’s w/ g-inv strs: H↵ = dB↵ + 1

2

a↵!L +
P

2b↵
�

!
Y +2b↵!, where

a, b, b↵ ↵ ↵ ↵,�, · · · ⌦↵�

j↵ j · j = 1

SO(1, nT )

SO(1, nT ) nT

g↵� = 2j↵j� � ⌦↵�

r
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• In 6d, on the other hand: story is d↵. in that:

– both ab & non-ab UV-incomplete (both non-renorm and strongly coupled in UV)

– interestingly, for non-ab g. thys with 8 Q’s: dof needed to make it UV comp isn’t nec. gravit’l

⇤ 6d N=(1,0) may contain asd tensors coup. to strings, which:

⇤ in the pot. dang strong coupl, become tensionless, furnishing 1 new dof

⇤ this leads to a conjectured non-triv UV fixed point (w/o grav. dof)

– what abt ab g. thy?

⇤ believed that the existence of UV fixed pt is intimately rel. to the non-ab nature [despite

little explicit knowledge of microscopic physics of 6d N = (1, 0) SCFTs]

⇤ if so, ab thy UV completed by grav itself as in 4d, unless emb. in non-ab thy at high E

• One of the purposes of this talk:

– Show this from 2 perspectives: phys of sugra and geom of string theory

– and then we will Analayze its consequences for ab symmetries of 6d SCFTs

• So: THATs the PLAN: will start w/ 1-Persp, and move on to 2-Persp, and then discuss 3-Conseqs.

1 6d N = (1, 0) SUGRA Perspective

Firstly, SUGRA.

1.1 Rudiments/Notations

• There’re 5 mults relevant to us: G, T, V, H, HH.

• We consider a thy w/ nT T-mults and g.gp G =
Q

G ⇥ U(1)m.

– for simp: assume sing. U(1) (in the paper we didn’t, but the key idea is manif. in sing U(1)).

• Bos (Pseudo-)Action w/ MPl = 1 is:

Z

R1,5
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2
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• Having written S, let me clarify the nomenclature once and for all:

– Firstly, : labels the non-abelian vector mults.

– ↵, �: label the tensor fields B↵=0,...,nT ’s w/ g-inv strs: H↵ = dB↵ + 1

2

a↵!L +
P

2b↵
�

!
Y +2b↵!, where !’s are the CS forms

of the spin/gauge connections.

– �s: are the Dyn labels of the fund. reps of G

– a, b’s and b: are SO(1, nT ) vecs, known as anom. coe↵s, whose ind.s cont. via a given ⌦↵�

– j: is subj. to j · j = 1, whose indep. nT entries param. the scalars in the T-mults

– the kin met: g↵� = 2j↵j� � ⌦↵�

– and finally the CS-coup of the tensor fields involve:
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 + 2b↵F 2 ,

which renders the cl. action anom in such a way that the cl. g.-var. cancels the 1-loop g. and grav anoms via the GS mech,

provided the variance factorizes: I1�loop
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• Having written S, let me clarify the nomenclature once and for all:

– Firstly, : labels the non-abelian vector mults.

– ↵, �: label the tensor fields B↵=0,...,nT ’s w/ g-inv strs: H↵ = dB↵ + 1

2

a↵!L +
P

2b↵
�

!
Y +2b↵!, where !’s are the CS forms

of the spin/gauge connections.

– �s: are the Dyn labels of the fund. reps of G

– a, b’s and b: are SO(1, nT ) vecs, known as anom. coe↵s, whose ind.s cont. via a given ⌦↵�

– j: is subj. to j · j = 1, whose indep. nT entries param. the scalars in the T-mults

– the kin met: g↵� = 2j↵j� � ⌦↵�

– and finally the CS-coup of the tensor fields involve:
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 + 2b↵F 2 ,

which renders the cl. action anom in such a way that the cl. g.-var. cancels the 1-loop g. and grav anoms via the GS mech,
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• Anomaly cancellation 
· Coupling of tensors involves 
· One-loop anomalies are cancelled   

• Anomaly equations  
 
 
                                                        where  
                                                                       M’s are multiplicities;   
                                                                        A’s, C’s, and  E’s are contants.  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• Such a anom canc. via GS is encoded in the anomaly equations: Let me write some down:

273 = nH � nV + 29nT (gravitational) (1.4)

b · b =
1

3
�2
(
X

M
IC

I
 � CAdj) (Nonabelian quartic) (1.5)

b · bµ = ��µ

X
Mµ

I AI
A

I
µ (1.6)

0 =
X

M
IE

I
qI (mixed Abelian-Nonabelina) (1.7)

b · b = �k

X
M

IA
I
q

2
I (mixed ab-nonab) (1.8)

b · b =
1

3

X
MIq

4
I (ab quartic) (1.9)

Here, M’s: various multip. and A,C,E: rep-theoretical constant factors.

• Having set the notations, let’s move to:

1.2 Anomalies in the decoupling limit

• First of all, why a pseudo-action?:

– Like in IIB, (a)sd to be imposed: ?H↵ = D↵
�H

�, whr D(j)↵� := (g�1)↵�⌦�� = 2j↵j� � �↵�

– Can then check: D2 = id and D↵
↵ = 1�nT , implying 1 p-e.vec (ev 1) and nT n-e.vec (ev �1)

3

provided the variance factorizes: I1�loop
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• Anomaly cancellation 
· Coupling of tensors involves 
· One-loop anomalies are cancelled   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                                                                       M’s are multiplicities;   
                                                                        A’s, C’s, and  E’s are contants.  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– j: is subj. to j · j = 1, whose indep. nT entries param. the scalars in the T-mults
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which renders the cl. action anom in such a way that the cl. g.-var. cancels the 1-loop g. and grav anoms via the GS mech,
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Decoupling Gravity in Sugra 
Nonabelian gauge interaction

• Decomposition of                  Vector Space  
· (Anti-)Self-duality:                          where  
·                                                where the “positive-eigenvector” is    itself  
·                               
 

·  
 

•       Interactions in the Decoupling Limit 
·               while       finite,  for a choice  
·                                                     no      -anomaly  after decoupling  
·                                                     non-zero      -anomaly  after decoupling  
· Fine because       gauge fields aren’t dynamical (’t Hooft anomaly)
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v = v+(j) + v�(j)
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g ! 1 ǧ j0

1/g2 ⇠ j0 · b = 0 b+ = 0̂ ̂ ̂ Ĝ
1/g2 ⇠ j0 · b = 0 b+ = 0 Ǧ ̌ ̌ ̌
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1/g2 ⇠ j0 · b = 0 b+ = 0 Ǧ ̌ ̌ ̌
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Ǧ g. fields, hence, nonzero Ǧ anom. after decpl: but that’s fine b/c Ǧ v.f. not dyn
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GS cont to Ǧ �Ĝ anom, prop to b̂ · b̌ = b�̂ · b�̌ , doesn’t lose a thing aft decpl. (So:

ABJ anoms remain cancelled: and the used-to-be gauge sym Ǧ becomes a true global
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3.4 The Proposal

So, we get to a proposal for determining the f.thytic glob sym in the decoupl limit:

We 1st assign to Ni hyps in a cplx rep Ri an initial flav gp factor U(Ni) = SU(Ni)⇥U(1)i. Then, poss

ab flav syms not contained in the simple factors are particular l.c.s:
P

miU(1)i,

which are free of the mixed cubic 1-loop ABJ anomalies w/ every non-abelian g. gp factor.

4 Summary

• To conclude, what we’ve argued for is the presence of U(1) flav syms in the TB. But we believe

that such a TB analysis gives a strong evidence for the U(1) flav syms in their SCFT limits too.

• Currently, we’re studying the 4d and 2d gens along similar lines; we hope that we can report some

interesting phys there as well.

• And yes, thank you for the listening.
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1/g2 ⇠ j0 · b = 0 b+ = 0 Ǧ ̌ ̌ ̌
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4 Summary

• To conclude, what we’ve argued for is the presence of U(1) flav syms in the TB. But we believe

that such a TB analysis gives a strong evidence for the U(1) flav syms in their SCFT limits too.

• Currently, we’re studying the 4d and 2d gens along similar lines; we hope that we can report some
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6D N=(1,0) Supergravity 
Basic Setup

• Multiplets
Multiplet Field Contents
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Decoupling Gravity in Sugra 
Nonabelian gauge interaction

• Decomposition of                  Vector Space  
· (Anti-)Self-duality:                          where  
·                                                where the “positive-eigenvector” is    itself  
·                               
 

·  
 

•       Interactions in the Decoupling Limit 
·               while       finite,  for a choice  
·                                                     no      -anomaly  after decoupling  
·                                                     non-zero      -anomaly  after decoupling  
· Fine because       gauge fields aren’t dynamical (’t Hooft anomaly)

– And the p-e.vec is nothing but j, as can be seen by D(j)↵�j
� = +j↵

• With such a struc: can decomp the vec sp: R1,T = V+ � V� where V+ = Span{j}

– Under this, every vec decomp into: v = v+(j) + v�(j)

– Similarly, the Bianchi ids for the tensors decompose as:

dH±(j) =
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2
a±(j)trR2 +

X



2b± (j)

�
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 + 2b±(j)F 2 (1.10)

• Now, given that we started by MP = 1: the decoup lim is taken by:

– ĝ ! 1 for some ̂’s while the rest ǧ remain finite; may happen in suitable region of the

tens moduli space, controlled by j VEVs.

– Let’s say some VEV j0 does the job. Then:

⇤ j0 · b̂ = 0 ) b̂ 2 V�; means B+ doesn’t participate in GS mech for Ĝ g. fields, hence,

no Ĝ-anoms even after decpl

⇤ on the other hand: j0 · b̌ 6= 0 ) b̌ /2 V�; means B+ does participate in GS mech for

Ǧ g. fields, hence, nonzero Ǧ anom. after decpl: but that’s fine b/c Ǧ v.f. not dyn

any more - the anoms are of ’t Hooft type

⇤ Smthing worth checking here is: ABJ anoms remain cancelled as b̂ 2 V�, implying the

GS cont to Ǧ �Ĝ anom, prop to b̂ · b̌ = b�̂ · b�̌ , doesn’t lose a thing aft decpl. (So:

ABJ anoms remain cancelled: and the used-to-be gauge sym Ǧ becomes a true global

sym!)

• This was abt non-ab g. fields – what about U(1) g. fields?

– Bfore decpl: the sugra thy is anom-free and obeys: b · b = 1
3

PMIq4I

– Once we take decpl lim: the sugra GS cont b · b = b+ · b+ + b� · b� loses the p-contrib. and

we’re left w/ b� · b�( 0) on LHS

– therefore, anom is no longer canc. unless there’re no U(1)-charged matt

– once again, ABJ anoms are cancelled since b̂ · b doesn’t loose any contrib., and therefore,

this U(1) remains as a true global sym

1.3 Geometric interpretation via String/F-theory

• Consider IIB bgrd w/ varying axio-dilaton (F-th), resulting in 6d N = (1, 0) sugra.
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3.4 The Proposal

So, we get to a proposal for determining the f.thytic glob sym in the decoupl limit:

We 1st assign to Ni hyps in a cplx rep Ri an initial flav gp factor U(Ni) = SU(Ni)⇥U(1)i. Then, poss

ab flav syms not contained in the simple factors are particular l.c.s:
P

miU(1)i,

which are free of the mixed cubic 1-loop ABJ anomalies w/ every non-abelian g. gp factor.

4 Summary

• To conclude, what we’ve argued for is the presence of U(1) flav syms in the TB. But we believe

that such a TB analysis gives a strong evidence for the U(1) flav syms in their SCFT limits too.

• Currently, we’re studying the 4d and 2d gens along similar lines; we hope that we can report some

interesting phys there as well.

• And yes, thank you for the listening.
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Ǧ g. fields, hence, nonzero Ǧ anom. after decpl: but that’s fine b/c Ǧ v.f. not dyn
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we’re left w/ b� · b�( 0) on LHS

– therefore, anom is no longer canc. unless there’re no U(1)-charged matt

– once again, ABJ anoms are cancelled since b̂ · b doesn’t loose any contrib., and therefore,

this U(1) remains as a true global sym

1.3 Geometric interpretation via String/F-theory

• Consider IIB bgrd w/ varying axio-dilaton (F-th), resulting in 6d N = (1, 0) sugra.

4

SO(1,nT)

⇤H↵ = D↵
�H
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Ǧ
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3.4 The Proposal

So, we get to a proposal for determining the f.thytic glob sym in the decoupl limit:

We 1st assign to Ni hyps in a cplx rep Ri an initial flav gp factor U(Ni) = SU(Ni)⇥U(1)i. Then, poss

ab flav syms not contained in the simple factors are particular l.c.s:
P

miU(1)i,

which are free of the mixed cubic 1-loop ABJ anomalies w/ every non-abelian g. gp factor.

4 Summary

• To conclude, what we’ve argued for is the presence of U(1) flav syms in the TB. But we believe

that such a TB analysis gives a strong evidence for the U(1) flav syms in their SCFT limits too.

• Currently, we’re studying the 4d and 2d gens along similar lines; we hope that we can report some

interesting phys there as well.

• And yes, thank you for the listening.

Note X(!) =

8
<

:
1se ! 2 A

0se ! 2 Ac

13

̌


̂



Decoupling Gravity in Sugra 
Abelian gauge interaction

• U(1) Interaction in the Decoupling Limit  
· Originally:  anomaly free,  
·                                       …  becomes non-positive upon decoupling    
·                                       . . .  anomaly is no longer cancelled 
· U(1) cannot remain dynamical (’t Hooft anomaly)  

• Worth Checking 
· ABJ anomalies remain cancelled since             and GS contributions to:  
   (a)              anomaly                                doesn’t change  
   (b)                  anomaly                                doesn’t change  
·      and         remain as a true global symmetry

b · b = b+ · b+ + b� · b�
b · b = 1

3

X
MIq

4
I

b+ = 0̂
G2 ·G2

̌̂ (⇠ b · b = b� · b�)̌̂ ̌̂
(⇠ b · b = b� · b�)̂ ̂G2 · U(1)2̂

G U(1)̌

> 0
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Decouple Gravity  
from String/F-theory EFT  

[SJL—Regalado—Weigand ’18]



F-theory EFT 
Physics via Geometry

• 6d EFT of F-theory  
· IIB on      with varying axio-dilaton  
· 6d N=(1,0) sugra effective physics 
· Encoded in the internal geometry 

• EFT via Geometry  
· Tensor fields                                           with                       ;  
·                 inner prod      intersection form,  
· Anomaly coefficients                         ;                  (7-brane loci) ;                 (“hight pairing”)  
· Tensor mult  VEVs                          , the Kahler form; normalized as  
 

· Gauge couplings 
 

B2

C4 = B↵ ^ w↵ w↵ 2 H1,1(B2) 1 + nT = h1,1(B2)

SO(1, nT ) ⌦↵� =

Z

B2

w↵ ^ w�

a↵w↵ = KB b↵w↵ = C b↵w↵ = C

j↵w↵ = J
volJ(B2) = j · j = 1

1/g2 / volJ(b)

1/g2 / volJ(b)
) =

8
<
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3.4 The Proposal

So, we get to a proposal for determining the f.thytic glob sym in the decoupl limit:

We 1st assign to Ni hyps in a cplx rep Ri an initial flav gp factor U(Ni) = SU(Ni)⇥U(1)i. Then, poss

ab flav syms not contained in the simple factors are particular l.c.s:
P

miU(1)i,

which are free of the mixed cubic 1-loop ABJ anomalies w/ every non-abelian g. gp factor.

4 Summary

• To conclude, what we’ve argued for is the presence of U(1) flav syms in the TB. But we believe

that such a TB analysis gives a strong evidence for the U(1) flav syms in their SCFT limits too.

• Currently, we’re studying the 4d and 2d gens along similar lines; we hope that we can report some

interesting phys there as well.

• And yes, thank you for the listening.
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Revisiting the Sugra Results 
Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit  
·   ’s           with         fixed  
·           ’s          with                fixed;    ’s need to be “contractible” 

• Geometric Intuition 
·      may have both contractable curves and noncontractable ones 
·      can only be of the former type  
·    should never be contractible as U(1) is bound to become a global symmetry   
· U(1) anomaly equation gives a direct geometric clue   
 — Mumford’s contractibility criterion:  
  

                        contract to point(s)                                  negative (semi)definite  
 

 —              implies     is not contractible!

MPlg ! 1
volJ(b ) = 0 volJ(B2) b

B2

b̂
b

{Ci} ) Iij = Ci · Cj

b · b > 0 b
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Geometric Constraint in F-theory 
“U(1) curves” are never contractible

⇡ : Ŷ3 ! B2

G

U(1)

b
S S0

C3 = AD [D] + · · · [D] 2 H1,1(Ŷ3)

S A �(s) := S � S0 � ⇡�1⇡⇤((S � S0) · S0) 2 H4(Ŷ3)

1/g2 =

Z

Ŷ3

[�(s)] ^ ⇤ [�(s)]
volJ(�⇡⇤(�(s) · �(s))F-theory limit���������!

2 H2(B2)

2 H4(Ŷ3)

• Rudiments
· An elliptic Calabi-Yau 3-fold,                    ,  as IIB/F-theory background 
—       :  degenerate fibers along curves
 

—         :  an extra section                     (in addition to the zero-section     )
 

· U(1) gauge coupling
—                                   ,  where
  

—      gives the     once shifted, 
 

—                                                   

• (Non-)Contractibility of b?
· Suppose the gauge group is U(1)                                           

· Claim
— Any base curve with                   supports a nonabelian gauge field

— If all base curves have self-intersection bigger than -3, then 

· Can also prove in the presence of 
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Ŷ3

[�(s)] ^ ⇤ [�(s)]
volJ(�⇡⇤(�(s) · �(s))F-theory limit���������!

) b = 2K̄B + 2⇡⇤(S · S0)

K̄B

C · C  �3

K̄B · K̄B > 0

G

2

2

2 2

1/g2 =

Z

Ŷ3
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Weaken U(1)  
with gravity coupling fixed  

[SJL—Lerche—Regalado—Weigand ’18]
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· Of the charged particles at each mass-level:  
— the maximal charge is proportional to mass 
— their counting is also given analytically 

• SDC  
· The masses of those particles can be written in terms of the moduli space distance  
· Observe that they are suppressed exponentially
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Details in the Talk by T.Weigand
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• What happens to (F-)EFT as U(1) gets weaker than gravity? 
· Infinite tower of massless particles arise from a tensionless string 
· They support some of the quantum gravity conjectures
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