Gravity and U(I)s in F-theory

1803.07998, 1807.xxxxx

S.-J.L., W.Lerche, D.Regalado, T.Weigand

Seung-Joo Lee (CERN)

String Phenomenology, U. of Warsaw 4-July-2018

Outline

Introduction and Summary

Decoupling Gravity

- Supergravity perspective
- F-theory perspective

Weakening U(1)

Conlusions and Outlook

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

Interesting

max dim for an SCFT, quantum gravity properties persist, ...

• When gravity decouples

SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]

• What about U(1)s?

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles?
 Swampland Distance Conjecture [Ooguri-Vafa '06]

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

 Interesting max dim for an SCFT, quantum gravity properties persist, ...

When gravity decouples

SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]

• What about U(I)s?

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

 Interesting max dim for an SCFT, quantum gravity properties persist, ...

When gravity decouples

- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(1)s?

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

 Interesting max dim for an SCFT, quantum gravity properties persist, ...

When gravity decouples

- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

 Interesting max dim for an SCFT, quantum gravity properties persist, ...

When gravity decouples

- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles? Swampland Distance Conjecture [Ooguri-Vafa '06]

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

 Interesting max dim for an SCFT, quantum gravity properties persist, ...

When gravity decouples

- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?

- Can it be weaker than gravity? Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles? Swampland Distance Conjecture [Ooguri-Vafa '06]

F-theory vacua as quantum theories of gravity

6d EFTs of String/F-theory

Controlled

more supersymmetries, geometries under better control, ...

 Interesting max dim for an SCFT, quantum gravity properties persist, ...

When gravity decouples

- SCFTs associated with nonabelian G [Heckman-Morrison-Vafa '15]
- What about U(I)s?

- Can it be weaker than gravity?
 Can it be weaker than gravity?
 Weak Gravity Conjecture [Arkani-Hamed et al. '06]
- Infinite light particles?
 Swampland Distance Conjecture [Ooguri-Vafa '06]

F-theoretic answers to the two questions

What happens to U(1)s as gravity is decoupled?

- U(I) gauge fields lead to global U(I) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
 - (a) **Physics** of supergravity
 - (b) Geometry of string/F-theory

• What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \ge \gamma m$ for each charge, where $\gamma = \frac{c}{aM_{\rm Pl}^2}$
- Their masses are suppressed by $m \simeq m_0 e^{-d}$

F-theoretic answers to the two questions

What happens to U(1)s as gravity is decoupled?

• U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand '18]

Proven in two perspectives

(a) **Physics** of supergravity

(b) Geometry of string/F-theory

• What happens to (F-)EFT as U(1) gets weaker than gravity?

• A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]

• Amogst them are particles with $q \ge \gamma m$ for each charge, where $\gamma = \frac{c}{aM_{\rm Pl}^2}$

• Their masses are suppressed by $m \simeq m_0 e^{-d}$

F-theoretic answers to the two questions

• What happens to U(1)s as gravity is decoupled?

- U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
 - (a) **Physics** of supergravity
 - (b) *Geometry* of string/F-theory

• What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \ge \gamma m$ for each charge, where $\gamma = \frac{c}{aM_{\rm Pl}^2}$
- Their masses are suppressed by $m \simeq m_0 e^{-d}$

F-theoretic answers to the two questions

• What happens to U(1)s as gravity is decoupled?

- U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
 - (a) **Physics** of supergravity
 - (b) *Geometry* of string/F-theory

What happens to (F-)EFT as U(1) gets weaker than gravity?

• A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]

• Amogst them are particles with $q \ge \gamma m$ for each charge, where $\gamma = \frac{c}{aM_{
m Pl}^2}$

• Their masses are suppressed by $m \simeq m_0 e^{-d}$

F-theoretic answers to the two questions

• What happens to U(1)s as gravity is decoupled?

- U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
 - (a) **Physics** of supergravity
 - (b) *Geometry* of string/F-theory

• What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \ge \gamma m$ for each charge, where $\gamma = \frac{c}{qM_{\rm Pl}^2}$
- Their masses are suppressed by $m \simeq m_0 e^{-d}$

F-theoretic answers to the two questions

• What happens to U(1)s as gravity is decoupled?

- U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
 - (a) **Physics** of supergravity
 - (b) *Geometry* of string/F-theory

• What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \ge \gamma m$ for each charge, where $\gamma = \frac{c}{aM_{
 m Pl}^2}$

• Their masses are suppressed by $m \simeq m_0 e^{-d}$

F-theoretic answers to the two questions

• What happens to U(1)s as gravity is decoupled?

- U(1) gauge fields lead to global U(1) symmetries [SJL-Regalado-Weigand '18]
- Proven in two perspectives
 - (a) **Physics** of supergravity
 - (b) *Geometry* of string/F-theory

• What happens to (F-)EFT as U(1) gets weaker than gravity?

- A tensionless string appears (lead to infinite light particles) [SJL-Lerche-Regalado-Weigand '18]
- Amogst them are particles with $q \geq \gamma m$ for each charge, where $\gamma = rac{c}{q M_{
 m Pl}^2}$
- Their masses are suppressed by $m \simeq m_0 e^{-d}$

Decouple Gravity from Supergravity

[SJL–Regalado–Weigand '18]

Basic Setup

• Multiplets

Multiplet	Field Contents
Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
Tensor	$(B^{\mu\nu}, \chi^-, \phi)$
Vector	(A_{μ}, λ^+)
Hyper	$(\psi^-, 4\varphi)$

• Action (with $M_{\rm Pl} = 1$)

$$\begin{split} \int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} \right. \\ \left. - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \mathrm{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F \right. \\ \left. - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}} \end{split}$$

$G = \prod G_{\kappa} \times U(1)^r$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_Z$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	Multiple	ets
	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
$\mathbf{n_{T}}$	Tensor	$ (B^{\mu\nu}, \chi^-, \phi)$
	Vector	(A_{μ}, λ^{+})
	Hyper	$(\psi^-,4arphi)$

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} \right)$$
$$- \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F$$
$$- \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} + S_{hyp}$$

• Notations

 $G = \prod G_{\kappa} \times U(1)^r$

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	Multiplets	
	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
$\mathbf{n_T}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$
	Vector	(A_{μ}, λ^{+})
	Hyper	$(\psi^-, 4\varphi)$

 $G = \prod G_{\kappa} \times U(1)^r$

• A	ction	(with	$M_{\rm Pl}$:	= 1)
-----	-------	-------	----------------	------

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum_{\alpha} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F_{\kappa} - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

•	Mu	ltip	lets
---	----	------	------

	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
$\mathbf{n_T}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$
	Vector	(A_{μ}, λ^{+})
	Hyper	$(\psi^-, 4\varphi)$

 $G = \prod G_{\kappa} \times U(1)^{\aleph}$

• Action (with $M_{\rm Pl} = 1$)

$$\begin{split} \int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} \right. \\ \left. - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \mathrm{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F \right. \\ \left. - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}} \end{split}$$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	Multiplets	
	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
$\mathbf{n_T}$	Tensor	$ (B^{\mu\nu}, \chi^-, \phi)$
	Vector	(A_{μ}, λ^{+})
	Hyper	$(\psi^-, 4\varphi)$

 $G = \prod G_{\kappa} \times U(1)$

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum_{\alpha} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F_{\kappa} - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	Multiplets	
	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$

 $G = \prod G_{\kappa} \times U(1)$

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum_{\alpha} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F_{\kappa} - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

• Notations

Tensor

Vector

Hyper

nT

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

 $\frac{(B^-_{\mu\nu}, \chi^-, \phi)}{(A_\mu, \lambda^+)}$

 $(\psi^-, 4\varphi)$

Basic Setup

	Multiplets	
	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
$\mathbf{n_T}$	Tensor	$\left (B^{\mu\nu}, \chi^-, \phi) \right $
	Vector	(A_{μ}, λ^{+})
	Hyper	$(\psi^-, 4\varphi)$

• Action (with $M_{\rm Pl} = 1$)

$$\begin{split} \int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} \right. \\ \left. - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \mathrm{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F \right. \\ \left. - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}} \end{split}$$

Notations

 $G = \prod G_{\kappa} \times U(1)$

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	multiplets	
	Multiplet	Field Contents
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
$\mathbf{n_{T}}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$
	Vector	(A_{μ}, λ^{+})
	Hyper	$(\psi^-, 4\varphi)$
$G = \prod \overline{G_{\kappa}} \times U(1)$		

• Action (with $M_{\rm Pl} = 1$)

$$\begin{split} \int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} \right. \\ \left. - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \mathrm{tr} \overline{F_{\kappa} \wedge * F_{\kappa}} - (2j \cdot b) F \wedge * F \right. \\ \left. - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}} \end{split}$$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	Multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$	
$\mathbf{n_T}$	Tensor	$\left (B^{\mu\nu}, \chi^-, \phi) \right $	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2}R * 1 - \frac{1}{4}g_{\alpha\beta}H^{\alpha} \wedge *H^{\beta} - \frac{1}{2}g_{\alpha\beta}dj^{\alpha} \wedge *dj^{\beta} - \sum_{\kappa} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} \overline{F_{\kappa} \wedge *F_{\kappa}} - (2j \cdot b)\overline{F \wedge *F} - \frac{1}{2}\Omega_{\alpha\beta}B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

•
$$g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$$
 ...» kinetic metric

Basic Setup

	Multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$	
$\mathbf{n_T}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod G_{\kappa} \times U(1)$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2}R * 1 - \frac{1}{4}g_{\alpha\beta}H^{\alpha} \wedge *H^{\beta} - \frac{1}{2}g_{\alpha\beta}dj^{\alpha} \wedge *dj^{\beta} - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} \overline{F_{\kappa} \wedge *F_{\kappa}} - (2j \cdot b)\overline{F \wedge *F} - \frac{1}{2}\Omega_{\alpha\beta}\overline{B^{\alpha}} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$

• $g_{\alpha\beta} = 2j_{\alpha}j_{\beta} - \Omega_{\alpha\beta} \dots$ kinetic metric

Basic Setup

	Multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$	
$\mathbf{n_{T}}$	Tensor	$\left (B^{\mu\nu}, \chi^-, \phi) \right $	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2}R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum_{\kappa} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

• Notations

- $\alpha, \beta = 0, \cdots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega^{\kappa}_Y + 2b^{\alpha}\omega_Z$

• $g_{\alpha\beta} = 2j_{\alpha}j_{\beta} - \Omega_{\alpha\beta} \dots$ kinetic metric

Basic Setup

	multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$	
$\mathbf{n_{T}}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum_{\kappa} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Basic Setup

	multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$	
$\mathbf{n_{T}}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$	
	Vector	(A_{μ}, λ^+)	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2}R * 1 - \frac{1}{4}g_{\alpha\beta}H^{\alpha} \wedge *H^{\beta} - \frac{1}{2}g_{\alpha\beta}dj^{\alpha} \wedge *dj^{\beta} - \sum_{\alpha} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge *F_{\kappa} - (2j \cdot b)F \wedge *F - \frac{1}{2}\Omega_{\alpha\beta}B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Basic Setup

	Multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$	
$\mathbf{n_{T}}$	Tensor	$\left (B^{\mu\nu}, \chi^-, \phi) \right $	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2}R * 1 - \frac{1}{4}g_{\alpha\beta}H^{\alpha} \wedge *H^{\beta} - \frac{1}{2}g_{\alpha\beta}dj^{\alpha} \wedge *dj^{\beta} - \sum_{\kappa} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge *F_{\kappa} - (2j \cdot b)F \wedge *F - \frac{1}{2}\Omega_{\alpha\beta}B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Basic Setup

	Multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu},\psi^+_{\mu},B^+_{\mu\nu})$	
$\mathbf{n_{T}}$	Tensor	$\left (B^{\mu\nu}, \chi^-, \phi) \right $	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum_{\alpha} \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Notations • $\alpha, \beta = 0, \dots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$ • $a^{\alpha}_{,}b^{\alpha}_{,\kappa}, b^{\alpha} \dots SO(1, n_T)$ vectors (indices α, β, \dots contracted via $\Omega_{\alpha\beta}$) • $j^{\alpha} \dots SO(1, n_T)$ vector with $j \cdot j = 1$ (n_T tensor-multiplet VEVs) • $g_{\alpha\beta} = 2j_{\alpha}j_{\beta} - \Omega_{\alpha\beta} \dots$ kinetic metric

Basic Setup

	Multiplets		
	Multiplet	Field Contents	
1	Gravity	$(g_{\mu\nu},\psi^+_{\mu},B^+_{\mu\nu})$	
$\mathbf{n_{T}}$	Tensor	$\left (B^{\mu\nu}, \chi^-, \phi) \right $	
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
$G = \prod \overline{G_{\kappa}} \times \overline{U(1)}$			

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F - \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Notations • $\alpha, \beta = 0, \dots, n_T$ > tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$ • $a_{\kappa}^{\alpha}b_{\kappa}^{\alpha}, b^{\alpha}$ > $SO(1, n_T)$ vectors (indices α, β, \dots contracted via $\Omega_{\alpha\beta}$) • j^{α} > $SO(1, n_T)$ vector with $j \cdot j = 1$ (n_T tensor-multiplet VEVs) • $g_{\alpha\beta} = 2j_{\alpha}j_{\beta} - \Omega_{\alpha\beta}$...> kinetic metric

Basic Setup

\bullet	Multiple	ets	•
	Multiplet	Field Contents	ſ
1	Gravity	$(g_{\mu\nu},\psi^+_{\mu},B^+_{\mu\nu})$	$\int_{\mathbb{R}}$
$\mathbf{n_{T}}$	Tensor	$(B^{\mu\nu}, \chi^-, \phi)$	JR
	Vector	(A_{μ}, λ^{+})	
	Hyper	$(\psi^-, 4\varphi)$	
	$G = \prod \overline{G_{\kappa}} \times$	U(1)	

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2}R * 1 - \frac{1}{4}g_{\alpha\beta}H^{\alpha} \wedge *H^{\beta} - \frac{1}{2}g_{\alpha\beta}dj^{\alpha} \wedge *dj^{\beta} - \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} \overline{F_{\kappa} \wedge *F_{\kappa}} - (2j \cdot b)\overline{F \wedge *F} - \frac{1}{2}\Omega_{\alpha\beta}B^{\alpha} \wedge X^{\beta} \right) + S_{\mathrm{hyp}}$$

Notations • $\alpha, \beta = 0, \dots, n_T \dots$ tensors B^{α} with $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}}\omega_Y^{\kappa} + 2b^{\alpha}\omega_L$ • $a^{\alpha}, b^{\alpha}_{\kappa}, b^{\alpha} \dots SO(1, n_T)$ vectors (indices α, β, \dots contracted via $\Omega_{\alpha\beta}$) • $j^{\alpha} \dots SO(1, n_T)$ vector with $j \cdot j = 1$ (n_T tensor-multiplet VEVs) • $g_{\alpha\beta} = 2j_{\alpha}j_{\beta} - \Omega_{\alpha\beta} \dots$ kinetic metric

Anomaly cancellation

• Anomaly cancellation

- Coupling of tensors involves $X_4^{\alpha} = \frac{1}{2}a^{\alpha} \operatorname{tr} R^2 + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^2 + 2b^{\alpha} F^2$
- One-loop anomalies are cancelled
 1-loop 1 0

 $I_8^{1-\text{loop}} = \frac{1}{32} \Omega_{\alpha\beta} X^{\alpha} \wedge X^{\beta}$

• Anomaly equations

$$\mathbf{b}_{\kappa} \cdot \mathbf{b}_{\kappa} = \frac{1}{3} \lambda_{\kappa}^{2} \left(\sum \mathcal{M}_{I}^{\kappa} C_{\kappa}^{I} - C_{\mathrm{Adj}_{\kappa}} \right) \quad [G_{\kappa}^{4}]$$

$$\mathbf{b}_{\kappa} \cdot \mathbf{b}_{\mu} = \lambda_{\kappa} \lambda_{\mu} \sum \mathcal{M}_{I}^{\kappa\mu} A_{\kappa}^{I} A_{\mu}^{I} \quad [G_{\kappa}^{2} \cdot G_{\mu}^{2}]$$

$$0 = \sum \mathcal{M}_{I}^{\kappa} E_{\kappa}^{I} q_{I} \qquad [G_{\kappa}^{3} \cdot U(1)]$$

$$\mathbf{b}_{\kappa} \cdot \mathbf{b} = \lambda_{k} \sum \mathcal{M}_{I}^{\kappa} A_{\kappa}^{I} q_{I}^{2} \qquad [G_{\kappa}^{2} \cdot U(1)^{2}]$$

$$\mathbf{b} \cdot \mathbf{b} = \frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4} \qquad [U(1)^{4}]$$

Anomaly cancellation

• Anomaly cancellation

- Coupling of tensors involves $X_4^{\alpha} = \frac{1}{2}a^{\alpha} \operatorname{tr} R^2 + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^2 + 2b^{\alpha} F^2$
- One-loop anomalies are cancelled

 $I_8^{1-\text{loop}} = \frac{1}{32} \Omega_{\alpha\beta} X^\alpha \wedge X^\beta$

Anomaly equations

$$\begin{aligned} \mathbf{b}_{\kappa} \cdot \mathbf{b}_{\kappa} &= \frac{1}{3} \lambda_{\kappa}^{2} \left(\sum \mathcal{M}_{I}^{\kappa} C_{\kappa}^{I} - C_{\mathrm{Adj}_{\kappa}} \right) \quad [G_{\kappa}^{4}] \\ \mathbf{b}_{\kappa} \cdot \mathbf{b}_{\mu} &= \lambda_{\kappa} \lambda_{\mu} \sum \mathcal{M}_{I}^{\kappa\mu} A_{\kappa}^{I} A_{\mu}^{I} \quad [G_{\kappa}^{2} \cdot G_{\mu}^{2}] \\ \mathbf{0} &= \sum \mathcal{M}_{I}^{\kappa} E_{\kappa}^{I} q_{I} \qquad [G_{\kappa}^{3} \cdot U(1)] \\ \mathbf{b}_{\kappa} \cdot \mathbf{b} &= \lambda_{k} \sum \mathcal{M}_{I}^{\kappa} A_{\kappa}^{I} q_{I}^{2} \qquad [G_{\kappa}^{2} \cdot U(1)^{2}] \\ \mathbf{b} \cdot \mathbf{b} &= \frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4} \qquad [U(1)^{4}] \end{aligned}$$

6D N=(1,0) Supergravity

Anomaly cancellation

• Anomaly cancellation

- Coupling of tensors involves $X_4^{\alpha} = \frac{1}{2}a^{\alpha} \operatorname{tr} R^2 + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa}^2 + 2b^{\alpha} F^2$
- One-loop anomalies are cancelled

 $I_8^{1-\text{loop}} = \frac{1}{32} \Omega_{\alpha\beta} X^\alpha \wedge X^\beta$

Anomaly equations

$$\mathbf{b}_{\kappa} \cdot \mathbf{b}_{\kappa} = \frac{1}{3} \lambda_{\kappa}^{2} \left(\sum \mathcal{M}_{I}^{\kappa} C_{\kappa}^{I} - C_{\mathrm{Adj}_{\kappa}} \right) \quad [G_{\kappa}^{4}]$$

$$\mathbf{b}_{\kappa} \cdot \mathbf{b}_{\mu} = \lambda_{\kappa} \lambda_{\mu} \sum \mathcal{M}_{I}^{\kappa\mu} A_{\kappa}^{I} A_{\mu}^{I} \quad [G_{\kappa}^{2} \cdot G_{\mu}^{2}]$$

$$0 = \sum \mathcal{M}_{I}^{\kappa} E_{\kappa}^{I} q_{I} \qquad [G_{\kappa}^{3} \cdot U(1)]$$

$$\mathbf{b}_{\kappa} \cdot \mathbf{b} = \lambda_{k} \sum \mathcal{M}_{I}^{\kappa} A_{\kappa}^{I} q_{I}^{2} \qquad [G_{\kappa}^{2} \cdot U(1)^{2}]$$

$$\mathbf{b} \cdot \mathbf{b} = \frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4} \qquad [U(1)^{4}]$$

6D N=(1,0) Supergravity

Anomaly cancellation

• Anomaly cancellation

- Coupling of tensors involves $X_4^{\alpha} = \frac{1}{2}a^{\alpha} \operatorname{tr} R^2 + \sum \frac{2b_{\kappa}^{\alpha}}{\lambda_{\mu}} \operatorname{tr} F_{\kappa}^2 + 2b^{\alpha} F^2$
- One-loop anomalies are cancelled

 $I_8^{1-\text{loop}} = \frac{1}{32} \Omega_{\alpha\beta} X^\alpha \wedge X^\beta$

Anomaly equations

$$\mathbf{b}_{\kappa} \cdot \mathbf{b}_{\kappa} = \frac{1}{3} \lambda_{\kappa}^{2} \left(\sum \mathcal{M}_{I}^{\kappa} C_{\kappa}^{I} - C_{\mathrm{Adj}_{\kappa}} \right) \quad [G_{\kappa}^{4}]$$

$$\mathbf{b}_{\kappa} \cdot \mathbf{b}_{\mu} = \lambda_{\kappa} \lambda_{\mu} \sum \mathcal{M}_{I}^{\kappa\mu} A_{\kappa}^{I} A_{\mu}^{I} \quad [G_{\kappa}^{2} \cdot G_{\mu}^{2}]$$

$$0 = \sum \mathcal{M}_{I}^{\kappa} E_{\kappa}^{I} q_{I} \qquad [G_{\kappa}^{3} \cdot U(1)]$$

$$\mathbf{b}_{\kappa} \cdot \mathbf{b} = \lambda_{k} \sum \mathcal{M}_{I}^{\kappa} A_{\kappa}^{I} q_{I}^{2} \qquad [G_{\kappa}^{2} \cdot U(1)^{2}]$$

$$\mathbf{b} \cdot \mathbf{b} = \frac{1}{3} \sum \mathcal{M}_{I} q_{I}^{4} \qquad [U(1)^{4}]$$

where

M's are multiplicities; A's, C's, and E's are contants.

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \text{Diag}(+1, -1, ..., -1)$ where the "positive-eigenvector" is j itself • $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^-$

•
$$v = v^+(j) + v^-(j)$$

 $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

- G_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}}
 ightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \implies b_{\hat{\kappa}}^+ = 0 \implies \text{no } G_{\hat{\kappa}}^- \text{anomaly after decoupling}$
 - $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \text{Diag}(+1, -1, ..., -1)$ where the "positive-eigenvector" is j itself • $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^-$

•
$$v = v^+(j) + v^-(j)$$

 $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

- \mathbf{G}_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}}
 ightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \implies b_{\hat{\kappa}}^+ = 0 \implies \text{no } G_{\hat{\kappa}}^- \text{anomaly}$ after decoupling
 - $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^-$ • $\operatorname{Span} \langle j \rangle$ • $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b_{\kappa}^{\pm}(j)}{\lambda_{\kappa}}\operatorname{tr} F_{\kappa}^2 + 2b^{\pm}(j)F^2$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}} o \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \implies b_{\hat{\kappa}}^+ = 0 \implies \text{no } G_{\hat{\kappa}}^- \text{anomaly}$ after decoupling
 - $1/g_{\tilde{\kappa}}^2 \sim j_0 \cdot b_{\tilde{\kappa}} \neq 0 \dots b_{\tilde{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\tilde{\kappa}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1,-1,\ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \downarrow \text{Span}\langle j \rangle$

•
$$v = v^+(j) + v^-(j)$$

 $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

- G_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}}
 ightarrow \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \implies b_{\hat{\kappa}}^+ = 0 \implies \text{no } G_{\hat{\kappa}}^- \text{anomaly}$ after decoupling
 - $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \dots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span}\langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}} o \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \implies b_{\hat{\kappa}}^+ = 0 \implies \text{no } G_{\hat{\kappa}}^- \text{anomaly}$ after decoupling
 - $1/g_{\tilde{\kappa}}^2 \sim j_0 \cdot b_{\tilde{\kappa}} \neq 0 \dots b_{\tilde{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\tilde{\kappa}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \dots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \downarrow \text{Span}\langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}}\operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$
- G_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}} o \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \implies b_{\hat{\kappa}}^+ = 0 \implies \text{no } G_{\hat{\kappa}}^- \text{anomaly}$ after decoupling
 - $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1,-1,\ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \downarrow \text{Span}\langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$
- \mathbf{G}_{κ} Interactions in the Decoupling Limit
 - $g_{\hat{\kappa}} o \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
 - $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots no G_{\hat{k}}$ -anomaly after decoupling
 - $1/g_{\tilde{\kappa}}^2 \sim j_0 \cdot b_{\tilde{\kappa}} \neq 0 \dots b_{\tilde{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\tilde{\kappa}}$ -anomaly after decoupling
 - Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1,-1,\ldots,-1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{dynamical}{\kappa} \\ non-dynamical \\ \check{\kappa} \end{cases}$

- $g_{\hat{\kappa}} o \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots h_{\hat{k}}$ no $G_{\hat{k}}$ -anomaly after decoupling
- $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \text{dynamical } \hat{\kappa} \\ \text{non-dynamical } \check{\kappa} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots b_{\hat{k}}^+ = 0 \dots b_{\hat{k}}^-$ no $G_{\hat{k}}$ -anomaly after decoupling
- $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span}\langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{\text{dynamical } \hat{\kappa}}{\text{non-dynamical } \check{\kappa}} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots h_{\hat{k}}$ no $G_{\hat{k}}$ -anomaly after decoupling
- $1/g_{\tilde{k}}^2 \sim j_0 \cdot b_{\tilde{k}} \neq 0 \dots b_{\tilde{k}}^+ \neq 0 \dots$ non-zero $G_{\tilde{k}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{\text{dynamical } \hat{\kappa}}{\text{non-dynamical } \check{\kappa}} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \dots b_{\hat{\kappa}}^+ = 0 \dots no G_{\hat{\kappa}}$ -anomaly after decoupling
- $1/g_{\tilde{\kappa}}^2 \sim j_0 \cdot b_{\tilde{\kappa}} \neq 0 \dots b_{\tilde{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\tilde{\kappa}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

6D N=(1,0) Supergravity

Basic Setup

	Multiplets	
	Multiplet	Field Contents
	Gravity	$(g_{\mu\nu}, \psi^+_{\mu}, B^+_{\mu\nu})$
	Tensor	$(B^{\mu u},\chi^-,\phi)$
	Vector	(A_{μ}, λ^+)
	Hyper	$(\psi^-, 4\varphi)$
$G = \prod G_{\kappa} \times U(1)$		

• Action (with $M_{\rm Pl} = 1$)

$$\int_{\mathbb{R}^{1,5}} \left(\frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} H^{\alpha} \wedge * H^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} \right)$$
$$- \sum \frac{2j \cdot b_{\kappa}}{\lambda_{\kappa}} \operatorname{tr} F_{\kappa} \wedge * F_{\kappa} - (2j \cdot b) F \wedge * F$$
$$- \frac{1}{2} \Omega_{\alpha\beta} B^{\alpha} \wedge X^{\beta} + S_{hyp}$$

• Notations
•
$$\alpha, \beta = 0, \dots, n_T \dots \gg B^{\alpha}$$

• $a^{\alpha}, b^{\alpha}, b^{\alpha} \dots \gg SO(1, n_T)$
• $j^{\alpha} \dots \gg SO(1, n_T)$
• $g_{\alpha\beta} = 2j_{\alpha}j_{\beta} - \Omega_{\alpha\beta} \dots \gg \text{kinetic metric}$
CS forms
 $H^{\alpha} = dB^{\alpha} + \frac{1}{2}a^{\alpha}\omega_L + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega^{\kappa}_Y + 2b^{\alpha}\omega_Z + \sum \frac{2b^{\alpha}_{\kappa}}{\lambda_{\kappa}}\omega^{\kappa}_X + 2b^{\alpha}\omega_Z +$

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{\text{dynamical } \hat{\kappa}}{\text{non-dynamical } \check{\kappa}} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{\kappa}}^2 \sim j_0 \cdot b_{\hat{\kappa}} = 0 \dots b_{\hat{\kappa}}^+ = 0 \dots no G_{\hat{\kappa}}$ -anomaly after decoupling
- $1/g_{\tilde{\kappa}}^2 \sim j_0 \cdot b_{\tilde{\kappa}} \neq 0 \dots b_{\tilde{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\tilde{\kappa}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{\text{dynamical } \hat{\kappa}}{\text{non-dynamical } \check{\kappa}} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \implies b_{\hat{k}}^+ = 0 \implies \text{no } G_{\hat{k}}^- \text{anomaly}$ after decoupling
- $1/g_{\check{\kappa}}^2 \sim j_0 \cdot b_{\check{\kappa}} \neq 0 \dots b_{\check{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\check{\kappa}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{dynamical}{\kappa} \\ non-dynamical \\ \check{\kappa} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots no G_{\hat{k}}$ -anomaly after decoupling
- $1/g_{\check{\kappa}}^2 \sim j_0 \cdot b_{\check{\kappa}} \neq 0 \dots > b_{\check{\kappa}}^+ \neq 0 \dots >$ non-zero $G_{\check{\kappa}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{\mathsf{dynamical}}{\kappa} \\ \mathsf{non-dynamical} \ \check{\kappa} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots no G_{\hat{k}}$ -anomaly after decoupling
- $1/g_{\check{\kappa}}^2 \sim j_0 \cdot b_{\check{\kappa}} \neq 0 \dots b_{\check{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\check{\kappa}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Nonabelian gauge interaction

• Decomposition of $\mathbf{SO}(\mathbf{1}, \mathbf{n_T})$ Vector Space

- (Anti-)Self-duality: $*H^{\alpha} = D^{\alpha}_{\ \beta}H^{\beta}$ where $D(j)^{\alpha}_{\ \beta} := 2j^{\alpha}j_{\beta} \delta^{\alpha}_{\ \beta}$
- $D(j) \sim \mathrm{Diag}(+1, -1, \ldots, -1)$ where the "positive-eigenvector" is j itself
- $\mathbb{R}^{1,n_T} = \mathcal{V}^+ \oplus \mathcal{V}^ \searrow \operatorname{Span} \langle j \rangle$
- $v = v^+(j) + v^-(j)$ $dH^{\pm}(j) = \frac{1}{2}a^{\pm}(j)\operatorname{tr} R^2 + \sum_{\kappa} \frac{2b^{\pm}_{\kappa}(j)}{\lambda_{\kappa}} \operatorname{tr} F^2_{\kappa} + 2b^{\pm}(j)F^2$

• \mathbf{G}_{κ} Interactions in the Decoupling Limit

 $\kappa \begin{cases} \frac{\mathsf{dynamical}}{\kappa} \\ \mathsf{non-dynamical} \ \check{\kappa} \end{cases}$

- $g_{\hat{\kappa}} \to \infty$ while $g_{\check{\kappa}}$ finite, for a choice j_0
- $1/g_{\hat{k}}^2 \sim j_0 \cdot b_{\hat{k}} = 0 \dots b_{\hat{k}}^+ = 0 \dots b_{\hat{k}}^+ = 0$ for $G_{\hat{k}}$ -anomaly after decoupling
- $1/g_{\check{\kappa}}^2 \sim j_0 \cdot b_{\check{\kappa}} \neq 0 \dots b_{\check{\kappa}}^+ \neq 0 \dots$ non-zero $G_{\check{\kappa}}$ -anomaly after decoupling
- Fine because $G_{\check{\kappa}}$ gauge fields aren't dynamical ('t Hooft anomaly)

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
 - Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$
 - $b \cdot b = b^+ \cdot b^+ + b^- \cdot b^- \dots$ becomes non-positive upon decoupling ... anomaly is no longer cancelled
 - U(I) cannot remain dynamical ('t Hooft anomaly)
- Worth Checking
 - ABJ anomalies remain cancelled since $b_{\hat{k}}^+ = 0$ and GS contributions to: (a) $G_{\hat{k}}^2 \cdot G_{\tilde{k}}^2$ anomaly $(\sim b_{\hat{k}} \cdot b_{\tilde{k}} = b_{\hat{k}}^- \cdot b_{\tilde{k}}^-)$ doesn't change
 - (b) $G_{\hat{\kappa}}^2 \cdot U(1)^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b = b_{\hat{\kappa}}^- \cdot b^-)$ doesn't change
 - G_{κ} and U(1) remain as a true global symmetry

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
 - Originally: anomaly free, $\mathbf{b} \cdot \mathbf{b} = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$
 - $b \cdot b = b^+ \cdot b^+ + b^- \cdot b^- \dots$ becomes non-positive upon decoupling \dots anomaly is no longer cancelled
 - U(I) cannot remain dynamical ('t Hooft anomaly)
- Worth Checking
 - ABJ anomalies remain cancelled since b⁺_k = 0 and GS contributions to:
 (a) G²_k · G²_k anomaly (~ b_k · b_k = b⁻_k · b⁻_k) doesn't change
 (b) G²_k · U(1)² anomaly (~ b_k · b = b⁻_k · b⁻) doesn't change
 - $G_{\check{\kappa}}$ and U(1) remain as a true global symmetry

Abelian gauge interaction

- U(1) Interaction in the Decoupling Limit
 - Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$ • $b \cdot b = \underbrace{b^+ \cdot b^+}_{> 0} + \underbrace{b^- \cdot b^-}_{< 0}$... becomes non-positive upon decoupling

... anomaly is no longer cancelled

- U(I) cannot remain dynamical ('t Hooft anomaly)
- Worth Checking
 - ABJ anomalies remain cancelled since $b^+_{\hat{\kappa}} = 0$ and GS contributions to:
 - (a) $G_{\hat{\kappa}}^2 \cdot G_{\tilde{\kappa}}^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b_{\tilde{\kappa}} = b_{\hat{\kappa}}^- \cdot b_{\tilde{\kappa}}^-)$ doesn't change
 - (b) $G_{\hat{\kappa}}^2 \cdot U(1)^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b = b_{\hat{\kappa}}^- \cdot b^-)$ doesn't change
 - G_{κ} and U(1) remain as a true global symmetry

Abelian gauge interaction

• U(1) Interaction in the Decoupling Limit

• Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$ • $b \cdot b = \underbrace{b + b^+}_{\geq 0} + \underbrace{b^- \cdot b^-}_{\leq 0}$... becomes non-positive upon decoupling anomaly is no longer cancelled

U(1) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

• ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^+ = 0$ and GS contributions to:

- (a) $G_{\hat{\kappa}}^2 \cdot G_{\tilde{\kappa}}^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b_{\tilde{\kappa}} = b_{\hat{\kappa}}^- \cdot b_{\tilde{\kappa}}^-)$ doesn't change
- (b) $G_{\hat{\kappa}}^2 \cdot U(1)^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b = b_{\hat{\kappa}}^- \cdot b^-)$ doesn't change

• G_{κ} and U(1) remain as a true global symmetry

Abelian gauge interaction

• U(1) Interaction in the Decoupling Limit

• Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$ • $b \cdot b = \underbrace{b^+ b^+}_{\geq 0} + \underbrace{b^- \cdot b^-}_{\leq 0} \dots$ becomes non-positive upon decoupling \dots anomaly is no longer cancelled

U(1) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

• ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^+ = 0$ and GS contributions to:

- (a) $G_{\hat{\kappa}}^2 \cdot G_{\tilde{\kappa}}^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b_{\tilde{\kappa}} = b_{\hat{\kappa}}^- \cdot b_{\tilde{\kappa}}^-)$ doesn't change
- (b) $G_{\hat{\kappa}}^2 \cdot U(1)^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b = b_{\hat{\kappa}}^- \cdot b^-)$ doesn't change

• $G_{\mathcal{K}}$ and U(1) remain as a true global symmetry

Abelian gauge interaction

• U(1) Interaction in the Decoupling Limit

• Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$ • $b \cdot b = \underbrace{b^+ b^+}_{\geq 0} + \underbrace{b^- \cdot b^-}_{\leq 0} \dots$ becomes non-positive upon decoupling \dots anomaly is no longer cancelled

U(1) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

• ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^+ = 0$ and GS contributions to:

- (a) $G_{\hat{\kappa}}^2 \cdot G_{\tilde{\kappa}}^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b_{\tilde{\kappa}} = b_{\hat{\kappa}}^- \cdot b_{\tilde{\kappa}}^-)$ doesn't change
- (b) $G_{\hat{\kappa}}^2 \cdot U(1)^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b = b_{\hat{\kappa}}^- \cdot b^-)$ doesn't change
- G_{κ} and U(1) remain as a true global symmetry

Abelian gauge interaction

• U(1) Interaction in the Decoupling Limit

• Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$ • $b \cdot b = b + b + b + b^- \cdot b^- \dots$ becomes non-positive upon decoupling \dots anomaly is no longer cancelled

U(I) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since $b_{\hat{\kappa}}^+ = 0$ and GS contributions to:
 - (a) $G_{\hat{\kappa}}^2 \cdot G_{\tilde{\kappa}}^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b_{\tilde{\kappa}} = b_{\hat{\kappa}}^- \cdot b_{\tilde{\kappa}}^-)$ doesn't change
 - (b) $G_{\hat{\kappa}}^2 \cdot U(1)^2$ anomaly $(\sim b_{\hat{\kappa}} \cdot b = b_{\hat{\kappa}}^- \cdot b^-)$ doesn't change
- $G_{\mathcal{K}}$ and U(1) remain as a true global symmetry

Abelian gauge interaction

• U(1) Interaction in the Decoupling Limit

• Originally: anomaly free, $b \cdot b = \frac{1}{3} \sum \mathcal{M}_I q_I^4 > 0$ • $b \cdot b = b + b + b + b^- \cdot b^- \dots$ becomes non-positive upon decoupling \dots anomaly is no longer cancelled

U(I) cannot remain dynamical ('t Hooft anomaly)

Worth Checking

- ABJ anomalies remain cancelled since b⁺_k = 0 and GS contributions to:
 (a) G²_k · G²_k anomaly (~ b_k · b_k = b⁻_k · b⁻_k) doesn't change
 (b) G²_k · U(1)² anomaly (~ b_k · b = b⁻_k · b⁻) doesn't change

Decouple Gravity from String/F-theory EFT

[SJL—Regalado—Weigand '18]

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

• EFT via Geometry

• Tensor fields $\cdots \rightarrow C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$

• $SO(1, n_T)$ inner prod ···· > intersection form, $\Omega_{\alpha\beta} = \int_{D} w_{\alpha} \wedge w_{\beta}$

- Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")

• Gauge couplings
$$\begin{cases} 1/g_{\kappa}^2 \propto \operatorname{vol}_J(b_{\kappa}) \\ 1/g^2 \propto \operatorname{vol}_J(b) \end{cases}$$

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

EFT via Geometry

• Tensor fields $\cdots \rightarrow C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$

• $SO(1, n_T)$ inner prod ···· > intersection form, $\Omega_{\alpha\beta} = \int_{D} w_{\alpha} \wedge w_{\beta}$

- Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")

• Gauge couplings
$$\begin{cases} 1/g_{\kappa}^2 \propto \operatorname{vol}_J(b_{\kappa}) \\ 1/g^2 \propto \operatorname{vol}_J(b) \end{cases}$$

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

• EFT via Geometry

• Tensor fields $\cdots \sim C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$

• $SO(1, n_T)$ inner prod ···· > intersection form, $\Omega_{\alpha\beta} = \int_{D} w_{\alpha} \wedge w_{\beta}$

• Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")

• Gauge couplings
$$\begin{cases} 1/g_{\kappa}^2 \propto \operatorname{vol}_J(b_{\kappa}) \\ 1/g^2 \propto \operatorname{vol}_J(b) \end{cases}$$

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

- Tensor fields \cdots $C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$
- $SO(1, n_T)$ inner prod ···· intersection form, $\Omega_{\alpha\beta} = \int_{B_{\alpha}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")

• Gauge couplings
$$\begin{cases} 1/g_{\kappa}^2 \propto \operatorname{vol}_J(b_{\kappa}) \\ 1/g^2 \propto \operatorname{vol}_J(b) \end{cases}$$

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

- Tensor fields \cdots $C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$
- $SO(1, n_T)$ inner prod ···· intersection form, $\Omega_{\alpha\beta} = \int_{B_{\alpha}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")

• Gauge couplings
$$\begin{cases} 1/g_{\kappa}^2 \propto \operatorname{vol}_J(b_{\kappa}) \\ 1/g^2 \propto \operatorname{vol}_J(b) \end{cases}$$

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

- Tensor fields $\cdots \sim C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$
- $SO(1, n_T)$ inner prod ···· intersection form, $\Omega_{\alpha\beta} = \int_{B_{\alpha}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")

• Gauge couplings
$$\begin{cases} 1/g_{\kappa}^2 \propto \operatorname{vol}_J(b_{\kappa}) \\ 1/g^2 \propto \operatorname{vol}_J(b) \end{cases}$$

Physics via Geometry

• 6d EFT of F-theory

- IIB on B_2 with varying axio-dilaton
- 6d N=(1,0) sugra effective physics
- Encoded in the internal geometry

- Tensor fields $\cdots \sim C_4 = B^{\alpha} \wedge w_{\alpha}$ with $w_{\alpha} \in H^{1,1}(B_2)$; $1 + n_T = h^{1,1}(B_2)$
- $SO(1, n_T)$ inner prod ···· intersection form, $\Omega_{\alpha\beta} = \int_{B_{\alpha}} w_{\alpha} \wedge w_{\beta}$
- Anomaly coefficients $a^{\alpha}w_{\alpha} = K_B$; $b^{\alpha}_{\kappa}w_{\alpha} = C_{\kappa}$ (7-brane loci); $b^{\alpha}w_{\alpha} = C$ ("hight pairing")
- Tensor mult VEVs $\cdots \rightarrow j^{\alpha}w_{\alpha} = J$, the Kahler form; normalized as $\operatorname{vol}_J(B_2) = j \cdot j = 1$

Revisiting the Sugra Results

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- g's $ightarrow\infty$ with $M_{
 m Pl}$ fixed
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- ---- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

— $b \cdot b > 0$ implies b is not contractible!

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- $g{\rm 's} \rightarrow \infty$ with $\,M_{\rm Pl}\,{\rm fixed}$
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- $g{\rm 's} \rightarrow \infty$ with $\,M_{\rm Pl}\,{\rm fixed}$
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- ---- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- g's $ightarrow \infty$ with $M_{
 m Pl}$ fixed
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- ---- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- g's $ightarrow \infty$ with $M_{
 m Pl}$ fixed
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(1) anomaly equation gives a direct geometric clue
- ---- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) \Rightarrow $I_{ij} = C_i \cdot C_j$ negative (semi)definite

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- g's $ightarrow \infty$ with $M_{
 m Pl}$ fixed
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(1) anomaly equation gives a direct geometric clue
- ---- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- g's $ightarrow \infty$ with M_{Pl} fixed
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

Geometric interpretation via F-theory

• Criterion for Being Dynamical in the Decoupling Limit

- g's $ightarrow \infty$ with $M_{
 m Pl}$ fixed
- $\operatorname{vol}_J(b's) = 0$ with $\operatorname{vol}_J(B_2)$ fixed; b's need to be "contractible"

Geometric Intuition

- B_2 may have both contractable curves and noncontractable ones
- $b_{\hat{\kappa}}$ can only be of the former type
- b should never be contractible as U(1) is bound to become a global symmetry
- U(I) anomaly equation gives a direct geometric clue
- Mumford's contractibility criterion:

 $\{C_i\}$ contract to point(s) $\Rightarrow I_{ij} = C_i \cdot C_j$ negative (semi)definite

— $b \cdot b > 0$ implies b is not contractible! ~ $\sum \mathcal{M}_I q_I^4$

"U(1) curves" are never contractible

• Rudiments

- An elliptic Calabi-Yau 3-fold, $\pi: \hat{Y}_3 \to B_2$, as IIB/F-theory background
- G_{κ} : degenerate fibers along curves $b_{\kappa} \in H_2(B_2)$
- U(1): an extra section $S \in H_4(\hat{Y}_3)$ (in addition to the zero-section S_0)

• U(I) gauge coupling

$$-C_{3} = A_{D} [D] + \cdots, \text{ where } [D] \in H^{1,1}(\hat{Y}_{3})$$

$$-S \text{ gives the } A \text{ once shifted, } \sigma(s) := S - S_{0} - \pi^{-1}\pi_{*}((S - S_{0}) \cdot S_{0}) \in H_{4}(\hat{Y}_{3})$$

$$-[1/g^{2} = \int_{\hat{Y}_{3}} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \operatorname{Vol}_{J}(-\pi_{*}(\sigma(s) \cdot \sigma(s)))$$

"U(1) curves" are never contractible

• Rudiments

- An elliptic Calabi-Yau 3-fold, $\pi: \hat{Y}_3 \to B_2$, as IIB/F-theory background
- G_{κ} : degenerate fibers along curves $b_{\kappa} \in H_2(B_2)$
- U(1): an extra section $S \in H_4(\hat{Y}_3)$ (in addition to the zero-section S_0)

• U(1) gauge coupling
-
$$C_3 = A_D[D] + \cdots$$
, where $[D] \in H^{1,1}(\hat{Y}_3)$
- S gives the A once shifted, $\sigma(s) := S - S_0 - \pi^{-1}\pi_*((S - S_0) \cdot S_0) \in H_4(\hat{Y}_3)$
- $1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \operatorname{vol}_J(-\pi_*(\sigma(s) \cdot \sigma(s)))$
: $b \in H_2(B_2)$

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$\sqsubseteq b \in H_2(B_2)$$

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

(Non-)Contractibility of b?

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S\cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $ar{K}_{B_2} \cdot ar{K}_{B_2} > 0$
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

• (Non-)Contractibility of b?

- Suppose the gauge group is U(1) $\Rightarrow b = 2 ar{K}_{B_2} + 2 \pi_* (S \cdot S_0)$
- <u>Claim</u>: \overline{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $ar{K}_{B_2} \cdot ar{K}_{B_2} > 0$
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S \cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $\, ar{K}_{B_2} \cdot \, ar{K}_{B_2} \! > 0 \,$
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

(Non-)Contractibility of b?

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S \cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $ar{K}_{B_2} \cdot ar{K}_{B_2} > 0$
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S \cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then \bar{K}_{B_2} \cdot \bar{K}_{B_2} > 0 ?
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

• (Non-)Contractibility of b?

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S\cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then $ar{K}_{B_2}\!\cdotar{K}_{B_2}\!>0$
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S \cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then \bar{K}_{B_2} · \bar{K}_{B_2} > 0
- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$\sqsubseteq b \in H_2(B_2)$$

• (Non-)Contractibility of b?

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S \cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- —Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then \bar{K}_{B_2} · \bar{K}_{B_2} > 0

- Can also prove in the presence of G_{κ}

"U(1) curves" are never contractible

$$1/g^2 = \int_{\hat{Y}_3} [\sigma(s)] \wedge * [\sigma(s)] \xrightarrow{\text{F-theory limit}} \text{vol}_J (-\pi_*(\sigma(s) \cdot \sigma(s)))$$
$$: b \in H_2(B_2)$$

- Suppose the gauge group is U(1) $\Rightarrow b = 2\bar{K}_{B_2} + 2\pi_*(S \cdot S_0)$
- <u>Claim</u>: \bar{K}_{B_2} is non-contracible
- —Any base curve with $C \cdot C \leq -3$ supports a nonabelian gauge field [Morrison-Taylor '12]
- If all base curves have self-intersection bigger than -3, then \bar{K}_{B_2} . \bar{K}_{B_2} > 0
- Can also prove in the presence of G_{κ}

Weaken U(1) with gravity coupling fixed

[SJL-Lerche-Regalado-Weigand '18]

Testing QG Conjectures in F-theory WGC, SDC, ...

• (SL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ must srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory wgc, spc, ...

• (SL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ <u>must</u> srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Testing QG Conjectures in F-theory wgc, spc, ...

(sL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ <u>must</u> srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

WGC, SDC, ...

• (SL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ <u>must</u> srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

WGC, SDC, ...

• (SL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ <u>must</u> srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

WGC, SDC, ...

• (SL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ <u>must</u> srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass

SDC

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

WGC, SDC, ...

• (SL)WGC: in the limit where U(1) is weak

- Can prove, for a general F-theory model with U(I), that a curve in B₂ <u>must</u> srhink
- D3-wrapped string is tensionless and leads to infinite light particles
- Of the charged particles at each mass-level:
- the maximal charge is proportional to mass
- their counting is also given analytically (*mirror symmetry* + *modular anomaly*)

• SDC

- The masses of those particles can be written in terms of the moduli space distance
- Observe that they are suppressed exponentially

Details in the Talk by T.Weigand

See also: [talk by I.Valenzuela], [talk by Klaewer]

Conclusions

- What happens to U(1)s as gravity is decoupled?
 - U(I) gauge fields lead to global U(I) symmetries
 at the SCFT level, they are the flavor U(I)s
 - Proven independently via physics and via mathematics

• What happens to (F-)EFT as U(1) gets weaker than gravity?

- Infinite tower of massless particles arise from a tensionless string
- They support some of the quantum gravity conjectures

Conclusions

- What happens to U(1)s as gravity is decoupled?
 - U(I) gauge fields lead to global U(I) symmetries
 at the SCFT level, they are the flavor U(I)s
 - Proven independently via physics and via mathematics
- What happens to (F-)EFT as U(1) gets weaker than gravity?
 - Infinite tower of massless particles arise from a tensionless string
 - They support some of the quantum gravity conjectures

- Multiple U(1)s?
- Other dimensions?
- Relation to the other approaches?

Conclusions

- What happens to U(1)s as gravity is decoupled?
 - U(I) gauge fields lead to global U(I) symmetries
 at the SCFT level, they are the flavor U(I)s
 - Proven independently via physics and via mathematics
- What happens to (F-)EFT as U(1) gets weaker than gravity?
 - Infinite tower of massless particles arise from a tensionless string
 - They support some of the quantum gravity conjectures

- Multiple U(1)s?
- Other dimensions?
- Relation to the other approaches?

