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Motivation: moduli stabilisation program

» Typical example: type |IB compactified on a Calabi-Yau orientifold

* Background fluxes for F3 and Hsz generate
- Superpotential for moduli W = (F3 — TH3) ANQ  Gubow, Vafa, Witten ‘99
X6

- Warped Calabi-Yau geometry — neglected in the large volume limit
Giddings, Ractru, Poletiinoti Ol

taken from Vaies & Uanga ‘12



Motivation: moduli stabilisation program

» Typical example: type |IB compactified on a Calabi-Yau orientifold

* Background fluxes for F3 and Hsz generate

- Superpotential for moduli W = (F3 — TH3) ANQ  Gubow, Vafa, Witten ‘99

/ X6

1 : _
Vi = — e (KD W DgW — 3]W )
Ry

e Microscopic intuition for V — 10d sugra: quantised internal fluxes
whose contribution to the vacuum energy depends on the CY moduli

1 } )
Srig = — 5 / e 2¢’H3‘2—|—‘F3|2—|—...
X10

Fy = F5 — CoHs

T=0C) +i6_¢



Motivation: moduli stabilisation program

» Typical example: type |IB compactified on a Calabi-Yau orientifold

* Background fluxes for F3 and Hsz generate

- Superpotential for moduli W = (F3 — TH3) ANQ  Gubow, Vafa, Witten ‘99

/ X6

1 i _
Vp = — e (K@ﬁDaWDBW _ 3]W|2)
Ry

* 4d description: set of 4d Domain Walls generating the flux quanta
X4

/

F{ = dci | X

4d 4-form field strength

domain walls



4-forms and fluxes

domain walls

e One then expects that physics behind flux compactifications is to great

extent encoded in a 4d effective theory describing 4-forms

* Moreover, 4-forms appear in different proposals inspired by string theory

e Bousso-Polchinski

e Kaloper-Sorbo

Feny et al. ‘00
G. Dual et al. '04-13

VBP:ZZAB/ Ff*Ff + Ag
A,B X4

/ iz |Fy? + |dof® + ¢F,

l n=1
1 2’ 2 2
Vo= gu fe(n+¢)7
multi-branched potential,
jump by crossing DW

V(o)

n=2

n=3



4-forms and fluxes

domain walls

e One then expects that physics behind flux compactifications is to great

extent encoded in a 4d effective theory describing 4-forms

* Moreover, 4-forms appear in different proposals inspired by string theory

e Bousso-Polchinski

e Kaloper-Sorbo

Question:

VBP:ZZAB/ Ff*Ff + Ag

A,B X4

/ iz |Fy? + |dof® + ¢F,

(

What can we learn from the
structure of 4-forms in 4d

strin g com Pactiﬁcations’?
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The type lIA potential



Type lIA with fluxes

- we neglect WS and
D-brane instanton effects

* Playground: type IlA at large volume

- Calabi-Yau orientifold

- D6-branes wrapping three-cycles moduli |
wa _ Qba 4+ i g®
4 Y
axion saxion

b:/ B B-field

c:/ C), RR potential
7T

a4 — / A [_)—brar!e
- Wilson line




Type lIA with fluxes

e Playground: type lIA at large volume > we neglect WS and
o D-brane instanton effects

- Calabi-Yau orientifold

- D6-branes wrapping three-cycles modul
wa — ¢a _|_ isa
- Internal RR fluxes Fo, F2, F4, Fe K N
axion saxion
- Internal Hs flux
Loucs & Mecaw 02 K real function of s2
Do >
Ractna & Z/m Poor O4 W holomorphic on y2
Grimm & Louis O4

Grimm & Lopes 'l
Rendtan & WW ‘17 (4d 4-forms contribute to a part of V)



4-forms and potentials

e Alternatively = 4d Lagrangian in 4-form formalism Beelleman, Vbaney, Valensuela "5
Carta e al. 16

1 1 1
—— ZABFfA*4Ff—— ZABQAQB *41+_/ FfQA
16 Jx, 16 Jx, 8 Jx,

F{} =dC$  runsoverinternal fluxes  Fj* < qa = ({)a € Z
ZAB depend on s?2

OA depend on ¢2 and ga



4-forms and potentials

e Alternatively — 4d Lagrangian in 4-form formalism Beelleman, Vbaney, Valensuela "5

Carta el al. ‘16
1 A B 1 AB 1 A
—— ZapF] NxyFy — — Z770a0B ¥4 1+ 3 Iy o4
16 Jx, 16 Jx, 8 Jx,
F =dC4  runsoverinternal fluxes Fi* < qa = (Q)a € Z
ZAB depend on s?2
0A depend on ¢2 and ga
* Integrating out the 4-forms by solving their eom: x, Fft = 74P op

7 AB generalisation L 5.0 2
[V = SQAQB] > of KS structure V= 2! foln+0)




4-forms and potentials [v = Z;‘BQA@BJ

e Example: RR fluxes only Fo, F2, F4, Fe Beclleman, Vaney, Valewsuela 15
$ $ R Carta ol ol 16
ea, -0

- Potential generated for Kahler moduli T2 = b2 + i t2

- Dim. red. 10d sugra democratic action — 4d 4-form for each flux

1 1 1
S Z FANx,FB - — ZAB 1 —/ FA
16 ABL y N kgl y 16 OAOB *4 +8 .. 4 0A



4-forms and potentials [v = Z;‘BQA@BJ

e Example: RR fluxes only Fo, F2, F4, Fe Beclleman, Vaney, Valewsuela 15
$ $ R Carta ol ol 16
ea, -0

- Potential generated for Kahler moduli T2 = b2 + i t2

- Dim. red. 10d sugra democratic action — 4d 4-form for each flux

1 m
4 po = € — beq + §/Cabcmabbbc — E/Ca,wb%bbc
gab , m ,
Z~ " =8e" 41C2 Pa = €q — Kapem b + E’Cabcb b°
9 gCLb ,CQ ﬁa’ o ma — mba’
9 ~
p =m
K = K pt®thte Kabe € Z
3e%/2 /
Gab = Wq N\ *eWp
2K Jx,

saxions t@ axions b2 and fluxes



4-forms and potentials [v = ZSAB@A@BJ

e Example: RR fluxes only Fo, F2, F4, Fe Beclleman, Vaney, Valewsuela 15
$ $ R Carta ol ol 16
ea, -0

- Potential generated for Kahler moduli T2 = b2 + i t8

- Dim. red. 10d sugra democratic action = 4d 4-form for each flux

1
4 po = eo = b"ea + 5 Kapem b — %Kabcb“bbbc
-1 K gab _ o brc T brc
y/ = e 4]C2 Pa €a Kabcm b + 9 ’Cabcb b
Yab ~q, a a
K2 P =m" —mb
9 15 —m
K = Kapet®tte Kape € Z l

Vir = e [403 + 9% papy + /C2ga 5" p + IC2 5



4-forms and potentials [v = ZQB@A@BJ

* One can rotate the basis of 4-forms to remove the axion dependence from

Po €0

— e —

g=| 2| - “W | =a
1A A B P m
F4 :RBF4 ‘n—-—-——* ﬁ m

(1 =" Kb’ —giKapeb®0° \ 7=l _, RZ-IR
0 3¢  —Kapeb®  2Kupcd®°
0 0 68 —bP

\ 0 0 0 1 )




4-forms and potentials [v = Z;‘BQA@BJ

e One can rotate the basis of 4-forms to remove the axion dependence from

Po €0
— € —
0= gZZ = | e | =4
Fy = RgFP e F; m

Z' - R'Z'R
e In this basis the p’s are quantised fluxes and arise as integration constants

1 ‘ '
- ZABinA/\*ALFiB -ZW &7%«%'02

* The potential displays a triple factorisation:

1
V=cq'R'ZR{
A AN

saxions axions fluxes



ZAB
Recap [V - 8QAQBJ

1
e We have found a potential of the form V = 3 FR'ZIRG |
A A N
saxions  axions fluxes

e That V is bilinear on the fluxes is not so surprising, since we are reducing a
10d two-derivative action



ZAB
Recap [V - 8QAQBJ

1
e We have found a potential of the form V = 3 FR'ZIRG |
A A N
saxions  axions fluxes

e That V is bilinear on the fluxes is not so surprising, since we are reducing a
10d two-derivative action

e The factorisation between axions and saxions is more remarkable, and it is
related to the fact that ga are quantised but non-gauge invariant fluxes, while

F=Rq

correspond to gauge invariant, non-quantised fluxes

G:dC—H/\C Waraty 00

— —

q P



ZAB
Recap [V - SQAQBJ

1

e We have found a potential of the form V = 3 FR'ZIRG |
A A KN
saxions  axions fluxes

e That V is bilinear on the fluxes is not so surprising, since we are reducing a
10d two-derivative action

e The factorisation between axions and saxions is more remarkable, and it is
related to the fact that ga are quantised but non-gauge invariant fluxes, while

p=Rq
correspond to gauge invariant, non-quantised fluxes

* In 4d, the entries pa are axion polynomials invariant under a discrete shift
symmetry. This protection makes them the basic building blocks of V.

* Things become more transparent once we understand the matrix R...



Understanding R



R and Freed-Witten anomalies

e Microscopically, R is determined by the discrete data of the compactification.
More precisely it is determined by the Freed-Witten anomalies of 4d strings

e Type IIB example: D7-brane wrapping Xe — 4d string

Xy Xe

|
!
|
| ,
L d
!
!
|
/i—
.
‘.




R and Freed-Witten anomalies

e Microscopically, R is determined by the discrete data of the compactification.
More precisely it is determined by the Freed-Witten anomalies of 4d strings

e Type IIB example: D7-brane wrapping Xe — 4d string

Hs fluxes create a FW
anomaly, cured by
D5-branes wrapping
P.D. 3-cycle

\'

4d DW ending
on 4d string
Mantucec & Evslin 07
Berasaluce - Gongaley et al. 12



R and Freed-Witten anomalies

e Microscopically, R is determined by the discrete data of the compactification.
More precisely it is determined by the Freed-Witten anomalies of 4d strings

e Type |IB example: D7-brane wrapping Xe = 4d string Hs fluxes create a FW
anomaly, cured by
D5-branes wrapping
P.D. 3-cycle

\'

4d DW ending
on 4d string

Warntucec & Ewslin O7

' Berasaluce - ez al. 12
o Alternatively: NSS/ Ns5/ Gougales

Hanany-Witten 5
effect 7 D5 D7




R and Freed-Witten anomalies

e Microscopically, R is determined by the discrete data of the compactification.
More precisely it is determined by the Freed-Witten anomalies of 4d strings

e Macroscopically: Co axion lifted by a potential generated by Hs

W = (F3 — 7H3) A Q V depends on F3 = F3 — CyHs
X6 ﬂ K
. R cures FW creates FW
7= Co +ie anomaly _ anomaly
axion coupled
to D7-brane

V ~ G(f — coh)a(f — coh)y



FVW anomalies in type lIA

Berasaluce - Gouzaley et al. 12

* In type lIA compactifications with RR fluxes, FW anomalies are developed by
NS5-branes on 4-cycles:

String Flux Domain wall Rank
type cycle type type cycle
NS5 7TZ & H4(M6, Z) F, = Gb(:}b D2 — fwg F, = e

NS5 7TZ c H4(M6, Z) Fy = mbwb D4 | my € PD[FQ N wa] fﬂQ We = /Cabcmb
NS5 | 7] € Hy( M, Z) Fo=m D6 [7¢] m




FVW anomalies in type lIA

Berasaluce - Gouzaley et al. 12

* In type lIA compactifications with RR fluxes, FW anomalies are developed by
NS5-branes on 4-cycles:

String Flux Domain wall Rank
type cycle type type cycle
NS5 | [r4] € Hy( Mg, Z) || Fy = ep@” D2 — fwg Fy, = e
NS5 | [4] € Hy(Mg,Z) || Fy =mbw, || D4 | my € P.D.[Fy A wy] S, We = Kapen?®
NS5 | 7] € Hy( M, Z) Fo=m D6 [7¢] m

For instance: Fo creates FW anomaly cancelled by D6 DW (~ F2)

Vo~ / [Fa 4+ BFy|? ~ gap(m® + mb®)(m” + mb®)
Xg '

, ~b
cures FW creates FW P

anomaly S anomaly
axion coupled

to NS5-brane



FVW anomalies in type lIA

* In type lIA compactifications with RR fluxes, FW anomalies are developed by

NS5-branes on 4-cycles:

String Flux Domain wall Rank
type cycle type type cycle
NS5 7TZ c H4(M6, Z) Fy = Gb(:}b D2 — fwff Fy = ¢
NS5 7TZ c H4(M6, Z) Fy = mbwb D4 | my € PD[FQ N wa] f7r2 We = /Cabcmb
NS5 | 7] € Hy( M, Z) Fo=m D6 [7¢] m
Can be encoded Fe Fa F2 Fo <« Cr:ﬁf)"r‘ngagw
In a matrix: 24
0 o, 0 0 Fs ~ D2pw
P = 0 0 Kabc 0 F4 ~ D4pw
/ ¢ 0 0 0 4 F2 ~ D6pw
nilpotent and 0 0 0 0 Fo~ D8pw
mutually commuting curing FW

anomaly




FVW anomalies in type lIA

* In type lIA compactifications with RR fluxes, FW anomalies are developed by
NS5-branes on 4-cycles:

0 <t O O 1 —-b %]Cabcbbbc — %Kjabcba bbbc
a
P _ 0 O ICa,bc 0 R _bCLPa _ 0 53 _Kabcbc %Kabcbabc
““10 0 0o 3, —> — € 0 0 5 b
0 O 0 0 0 0 0 1

* Alternatively: R describes the internal DW charges induced by the B-field

— Charge monodromy matrix

a 1 bic 1 apbpc
pa B 0 (Sg _IcabcbC %Icabcbabc €a D4DW
p* 0 0 o, ad m’ D6ow
P 0 0 0 1 m D8pw



R and discrete shift symmetries

e We have that 7=Rq= e~ 9" Pa 7

e Axions of unit period ¢ ~ ¢% +n", n

e Compensated by a shift of flux quanta so that p remains invariant

—/ n®P,

g — q =e

- Generalisation of the discrete symmetry in KS

- Multi-branched scalar potential

q

n=0

V(o)

n=2

n=3



0 and the superpotential

* Since the discrete shift symmetry is of gauge nature, the superpotential W
is also invariant under it

e In fact W and pa contain the same information (in the large volume limit):

Gutbow 99
W Tt B In our case: Taglor &Yafa 99
- (w) "4 W = ey — e, T + %Kabcm“Tch - mélCabcT“Tch
1 1
l, mt = (1,-1°, §/cabcTaTb, —EICabCT“TbTC)

W = [R(¢)! "TI(p)]* -7 = [(s)]- 5 = e 707 [IT4(0) - 5] = ™" 77 pg

A A

inv. & flux independent
no exponential dep. in ¢

1
po = €0 — b"eq + 5 Kapem“B'b — %Kabcbabbbc
holomorphicity of W



1
V=—¢'R'Z'Rq

Recap A A K

saxions axions fluxes

* The axion-dependent matrix R defining the invariants pais specified by
discrete, topological data of the compactification. In particular by the FW
anomalies developed by 4d string defects.

* |n particular, each 4d string corresponds to an integer valued, nilpotent
matrix Pa that acts on fluxes and axions and leaves the pa invariant

[R:@_(bapa] See aleo 7. Valewsuela ¢ talk

e This generalises the discrete shift symmetry and multi-branched structure of
the KS potential. The corrections to V must be functions of pa and not of V.
In principle there could be a correction of the form

kPC papppc

 All this information is gathered in a master polynomial po = W|s=0

e All these results hold when we add NS-fluxes and D6-branes...



Generalisations



Adding Hs flux V=2 e

e New 4d strings get FW anomalies (D4’s) <> new axions enter V: ¢& = / Cs
Ay

e Zlarger and no longer definite positive

V = VRr + Vs + Vioc

D[] — m[lly] = 4Tog)

«

D6-brane deficit

C]JN/ ar N\ *gQug
X6

— Allows to obtain AdSs vacua



Adding D6-branes

New fluxes: ng, ng

_ - 3-cycle deformations X
New fields

- Wilson lines A

Both classes of moduli are counted by the number of harmonic
1-forms in IIs. We then have b1(Ils) complex moduli

@:/ Jc—/ A=T"%, —0
22 ™1

J.=B+1iJ =T,

For each complex modulus/harmonic 1-form we have one non-trivial 2-cycle in I3,
on which we can switch on a flux nr. Moreover, such 2-cycle may be trivial or non-
trivial in the compactification six-manifold — flux n4 DM, Begatads, .

Carta et al, 16

1 1 .
W =eq—e,T% + §KabcmaTch — mEICGbCT“TbTC — hxgNE —[qﬂ(nm E naiT“ﬂ




Adding D6-branes

e The structure of the potential is

V = VRr+cs + Wns + VbBr + Viec

which again can be rewritten as

1

V=c@'RZ7R]
A A N
saxions  axions fluxes

e Rdepends onthe 4d axions b, 0° =0b2fi — 0", XK =ReNK =¢K —(..)

e Z ' not always invertible



Metric fluxes

* One can also consider type IIA with RR, NS and metric fluxes

* Example worked out: Z> x Z> orientifold

. 1 . .
 Everything works the same V = 3 7"R'Z'RG with ga now containing
the metric fluxes A A KN
saxions  axions fluxes

e Z' obtained from standard N=1 formula is a priori not invertible:
only when the Bianchi identities for the fluxes are imposed

— V4d SUGRA ma‘tCheS V Wdfadcwa & W '05

- Zis invertible (needed for 4-form formalism)

|

[Criterion for consistency]




. ZAB
Conclusions [v ~ SQA@BJ

e \We have computed the classical scalar potential for type IlIA CY orientifolds in
the presence of RR+NS fluxes and D6-branes

e The CY condition is not essential, but it gives us the spectrum of moduli,
internal fluxes and 4d defects

X4

gauge theories strings domain walls




. ZAB
Conclusions [v ~ SQA@BJ

e We have computed the classical scalar potential for type IIA CY orientifolds in
the presence of RR+NS fluxes and D6-branes

e The CY condition is not essential, but it gives us the spectrum of moduli,
internal fluxes and 4d defects

1
_q—»‘thz—qu—*
8

A AN

saxions axions fluxes

e We have found a bilinear structure and a triple factorisation V' =
between saxions, unit period axions and quantised fluxes

e Microscopically, this comes from gauge invariance (gauge inv. fluxes, FW, HW)

e Macroscopically, this translates into a discrete shift symmetry that relates
different branches of the scalar potential V, and defines the invariants pa that
any flux-dependent quantity must defend on, even after UV corrections

e To connect with the 4-form formalism Z"1 must be invertible. This seems to
be related to the consistency conditions between different fluxes.
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