The type IIA flux potential, 4-forms and Freed-Witten anomalies

Fernando Marchesano

The type IIA flux potential, 4-forms and Freed-Witten anomalies

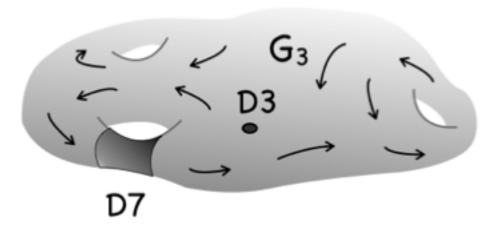
Fernando Marchesano

Based on:

Herraez, Ibañez, F.M., Zoccarato [1802.05771]

Motivation: moduli stabilisation program

- Typical example: type IIB compactified on a Calabi-Yau orientifold
- Background fluxes for F₃ and H₃ generate
 - Superpotential for moduli $W=\int_{X_6} \left(F_3- au H_3
 ight)\wedge\Omega$ Gukov, Vafa, Witten '99
 - Warped Calabi-Yau geometry → neglected in the large volume limit
 Giddings, Kachru, Polchinski '01



taken from Ibañez & Uranga '12

Motivation: moduli stabilisation program

- Typical example: type IIB compactified on a Calabi-Yau orientifold
- Background fluxes for F₃ and H₃ generate

– Superpotential for moduli
$$W=\int_{X_6}(F_3-\tau H_3)\wedge\Omega$$
 Gukov, Vafa, Witten '99
$$V_F=\frac{1}{\kappa_4^2}\,e^K\left(K^{\alpha\bar\beta}D_\alpha WD_{\bar\beta}\overline W-3|W|^2\right)$$

 Microscopic intuition for V → 10d sugra: quantised internal fluxes whose contribution to the vacuum energy depends on the CY moduli

$$S_{IIB} = -\frac{1}{4\kappa_{10}^2} \int_{X_{10}} e^{-2\phi} |H_3|^2 + |\tilde{F}_3|^2 + \dots$$

$$\tilde{F}_3 = F_3 - C_0 H_3$$

$$\tau = C_0 + ie^{-c_0}$$

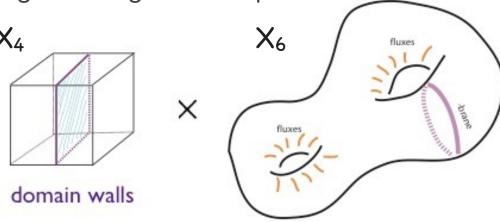
Motivation: moduli stabilisation program

- Typical example: type IIB compactified on a Calabi-Yau orientifold
- Background fluxes for F₃ and H₃ generate
 - Superpotential for moduli $W=\int_{X_6}(F_3-\tau H_3)\wedge\Omega$ Gukov, Vafa, Witten '99 $V_F=\frac{1}{\kappa_4^2}\,e^K\left(K^{\alphaar{eta}}D_\alpha WD_{ar{eta}}\overline{W}-3|W|^2\right)$

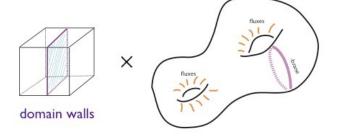
4d description: set of 4d Domain Walls generating the flux quanta

$$F_4^A = dC_3^A$$

4d 4-form field strength



4-forms and fluxes



- One then expects that physics behind flux compactifications is to great extent encoded in a 4d effective theory describing 4-forms
- Moreover, 4-forms appear in different proposals inspired by string theory
 - Bousso-Polchinski

$$V_{BP} = \sum_{A,B} Z_{AB} \int_{X_4} F_4^A \star F_4^B + \Lambda_0$$

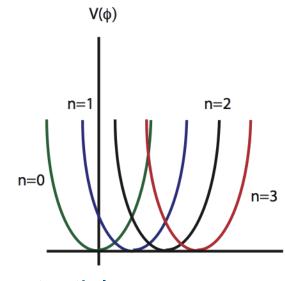
Kaloper-Sorbo

 $\int d^4x \, |F_4|^2 + |d\phi|^2 + \phi F_4$

•

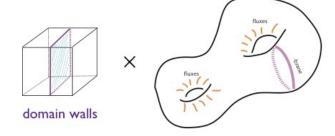
 $V = \frac{1}{2}\mu^2 f_\Phi^2 (n+\phi)^2 \quad \text{\tiny n=0} \label{eq:V}$

Feng et al. '00 G. Dvali et al. '04-13



multi-branched potential, jump by crossing DW

4-forms and fluxes



- One then expects that physics behind flux compactifications is to great extent encoded in a 4d effective theory describing 4-forms
- Moreover, 4-forms appear in different proposals inspired by string theory

$$V_{BP} = \sum_{A,B} Z_{AB} \int_{X_4} F_4^A \star F_4^B + \Lambda_0$$

Kaloper-Sorbo

$$\int d^4x \, |F_4|^2 + |d\phi|^2 + \phi F_4$$

•

Question:

What can we learn from the structure of 4-forms in 4d string compactifications?

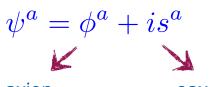
The type IIA potential

Type IIA with fluxes

Playground: type IIA at large volume

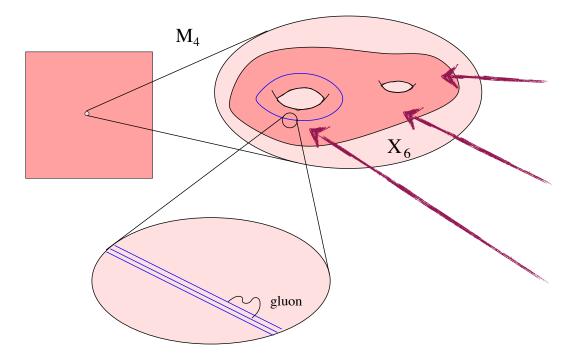
we neglect WS and D-brane instanton effects

- Calabi-Yau orientifold
- D6-branes wrapping three-cycles



axion

saxion



$$b = \int_{\pi_2} B_2$$
 B-field

$$c = \int_{\pi_p} C_p \quad \text{RR potential}$$

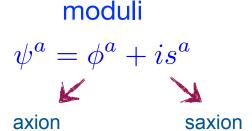
$$a = \int_{\pi_1} A \qquad \text{ D-brane }$$
 Wilson line

Type IIA with fluxes

Playground: type IIA at large volume

we neglect WS and D-brane instanton effects

- Calabi-Yau orientifold
- D6-branes wrapping three-cycles
- Internal RR fluxes F₀, F₂, F₄, F₆
- Internal H₃ flux



Louis & Micu'02

Kachru & Kashani-Poor'04

Grimm & Louis'04

Grimm & Lopes'11

Kerstan & Weigand'11

K real function of s^a
W holomorphic on ψ

(4d 4-forms contribute to a part of V)

Alternatively → 4d Lagrangian in 4-form formalism

Bielleman, Ibanez, Valenzuela '15 Carta el al. '16

$$-\frac{1}{16} \int_{X_4} Z_{AB} F_4^A \wedge *_4 F_4^B - \frac{1}{16} \int_{X_4} Z^{AB} \varrho_A \varrho_B *_4 1 + \frac{1}{8} \int_{X_4} F_4^A \varrho_A$$

$$F_4^A = dC_3^A$$
 runs over internal fluxes $F_4^A \leftrightarrow q_A = (\vec{q})_A \in \mathbb{Z}$

$$Z_{AB}$$
 depend on s^a

$$QA$$
 depend on ϕ^a and q_A

Alternatively → 4d Lagrangian in 4-form formalism

Bielleman, Ibanez, Valenzuela '15 Parta el al. 16

$$-\frac{1}{16} \int_{X_4} Z_{AB} F_4^A \wedge *_4 F_4^B - \frac{1}{16} \int_{X_4} Z^{AB} \varrho_A \varrho_B *_4 1 + \frac{1}{8} \int_{X_4} F_4^A \varrho_A$$

$$F_4^A = dC_3^A$$
 runs over internal fluxes $F_4^A \leftrightarrow q_A = (\vec{q})_A \in \mathbb{Z}$

$$Z_{AB}$$
 depend on s^a

QAdepend on ϕ^a and q_A

Integrating out the 4-forms by solving their eom:

$$*_4 F_4^A = Z^{AB} \varrho_B$$

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

generalisation of KS structure $V=rac{1}{2}\mu^2f_\Phi^2(n+\phi)^2$

$$V = \frac{1}{2}\mu^2 f_{\Phi}^2 (n + \phi)^2$$

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

Example: RR fluxes only F₀, F₂, F₄, F₆

 \$\psi\$ \$\ps

Bielleman, Ibanez, Valenzuela '15 Carta el al. '16

- Potential generated for Kähler moduli T^a = b^a + i t^a
- Dim. red. 10d sugra democratic action → 4d 4-form for each flux

$$-\frac{1}{16} \int_{X_4} Z_{AB} F_4^A \wedge *_4 F_4^B - \frac{1}{16} \int_{X_4} Z^{AB} \varrho_A \varrho_B *_4 1 + \frac{1}{8} \int_{X_4} F_4^A \varrho_A$$

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

Example: RR fluxes only F₀, F₂, F₄, F₆ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow m, -ma, e_a , $-e_0$ Bielleman, Ibanez, Valenzuela '15 Carta el al. 16

- Potential generated for Kähler moduli T^a = b^a + i t^a
- Dim. red. 10d sugra democratic action → 4d 4-form for each flux

$$\mathbf{Z}^{-1} = 8e^{K} \begin{pmatrix} 4 & & & & \\ & g^{ab} & & & \\ & & \frac{4\mathcal{K}^{2}}{9}g_{ab} & & \\ & & & \frac{\mathcal{K}^{2}}{9} \end{pmatrix}$$

$$\mathbf{Z}^{-1} = 8e^{K} \begin{pmatrix} 4 & & & \\ & g^{ab} & & \\ & & \frac{4\mathcal{K}^{2}}{9}g_{ab} & \\ & & \frac{\mathcal{K}^{2}}{9} \end{pmatrix} \qquad \rho_{0} = e_{0} - b^{a}e_{a} + \frac{1}{2}\mathcal{K}_{abc}m^{a}b^{b}b^{c} - \frac{m}{6}\mathcal{K}_{abc}b^{a}b^{b}b^{c}$$

$$\rho_{a} = e_{a} - \mathcal{K}_{abc}m^{b}b^{c} + \frac{m}{2}\mathcal{K}_{abc}b^{b}b^{c}$$

$$\tilde{\rho}^{a} = m^{a} - mb^{a}$$

$$\tilde{\rho} = m$$

$$\mathcal{K} \equiv \mathcal{K}_{abc} t^a t^b t^c \qquad \mathcal{K}_{abc} \in \mathbb{Z}$$
$$g_{ab} = \frac{3e^{\phi/2}}{2\mathcal{K}} \int_{X_6} \omega_a \wedge \star_6 \omega_b$$

saxions ta

axions ba and fluxes

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

Example: RR fluxes only F₀, F₂, F₄, F₆

 \$\psi\$ \$\ps

Bielleman, Ibanez, Valenzuela '15 Parta el al. '16

- Potential generated for Kähler moduli T^a = b^a + i t^a
- Dim. red. 10d sugra democratic action → 4d 4-form for each flux

$$\mathbf{Z}^{-1} = 8e^{K} \begin{pmatrix} 4 & & & \\ & g^{ab} & & \\ & & \frac{4\mathcal{K}^{2}}{9}g_{ab} & \\ & & \frac{\mathcal{K}^{2}}{9} \end{pmatrix} \qquad \rho_{0} = e_{0} - b^{a}e_{a} + \frac{1}{2}\mathcal{K}_{abc}m^{a}b^{b}b^{c} - \frac{m}{6}\mathcal{K}_{abc}b^{a}b^{b}b^{c}$$

$$\rho_{a} = e_{a} - \mathcal{K}_{abc}m^{b}b^{c} + \frac{m}{2}\mathcal{K}_{abc}b^{b}b^{c}$$

$$\tilde{\rho}^{a} = m^{a} - mb^{a}$$

$$\tilde{\rho} = m$$

$$\mathcal{K} \equiv \mathcal{K}_{abc} t^a t^b t^c \qquad \qquad \mathcal{K}_{abc} \in \mathbb{Z}$$

$$V_{\rm RR} = e^K \left[4\rho_0^2 + g^{ab}\rho_a\rho_b + \frac{4}{9}\mathcal{K}^2 g_{ab}\tilde{\rho}^a\tilde{\rho}^b + \frac{1}{9}\mathcal{K}^2\tilde{\rho}^2 \right]$$

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

• One can rotate the basis of 4-forms to remove the axion dependence from ϱ

$$\vec{\varrho} = \begin{pmatrix} \rho_0 \\ \rho_a \\ \tilde{\rho}^a \\ \tilde{\rho}^a \end{pmatrix} \rightarrow \begin{pmatrix} e_0 \\ e_a \\ m^a \\ m \end{pmatrix} = \vec{q}$$

$$\mathbf{R} = \begin{pmatrix} 1 & -b^a & \frac{1}{2} \mathcal{K}_{abc} b^b b^c & -\frac{1}{3!} \mathcal{K}_{abc} b^a b^b b^c \\ 0 & \delta_b^a & -\mathcal{K}_{abc} b^c & \frac{1}{2} \mathcal{K}_{abc} b^a b^c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{Z}^{-1} \rightarrow \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R}$$

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

• One can rotate the basis of 4-forms to remove the axion dependence from ϱ

$$ec{arrho} = egin{pmatrix}
ho_0 \
ho_a \
ho^a \
ho^a \
ho^a \end{pmatrix}
ightarrow egin{pmatrix} e_0 \ e_a \ m^a \ m \end{pmatrix} = ec{q}$$
 $\mathbf{Z}^{-1}
ightarrow \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R}$

• In this basis the ϱ 's are quantised fluxes and arise as integration constants

$$-\frac{1}{16} \int_{X_4} Z'_{AB} F'^{A}_4 \wedge *_4 F'^{B}_4$$

Louis & Micu'02

Farakos et al. 17

• The potential displays a triple factorisation:

$$V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$$
saxions axions fluxes

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

We have found a potential of the form

$$V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$$
saxions axions fluxes

• That V is bilinear on the fluxes is not so surprising, since we are reducing a 10d two-derivative action

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

We have found a potential of the form

$$V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$$
saxions axions fluxes

- That V is bilinear on the fluxes is not so surprising, since we are reducing a 10d two-derivative action
- The factorisation between axions and saxions is more remarkable, and it is related to the fact that q_A are quantised but non-gauge invariant fluxes, while

$$\vec{\rho} = \mathbf{R} \, \vec{q}$$

correspond to gauge invariant, non-quantised fluxes

$$\mathbf{G} = d\mathbf{C} - H \wedge \mathbf{C} + \mathbf{\bar{G}} \wedge e^{B}$$

$$\vec{q} \qquad \vec{\rho}$$

Marolf'00

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

We have found a potential of the form

$$V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$$
saxions axions fluxes

- That V is bilinear on the fluxes is not so surprising, since we are reducing a 10d two-derivative action
- The factorisation between axions and saxions is more remarkable, and it is related to the fact that q_A are quantised but non-gauge invariant fluxes, while

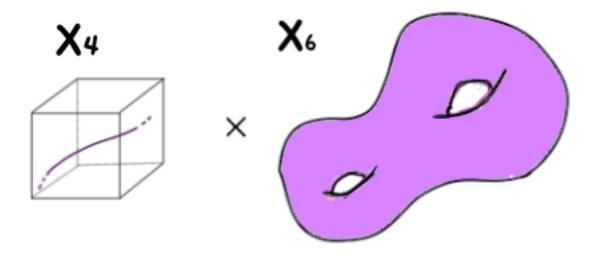
$$\vec{\rho} = \mathbf{R} \, \vec{q}$$

correspond to gauge invariant, non-quantised fluxes

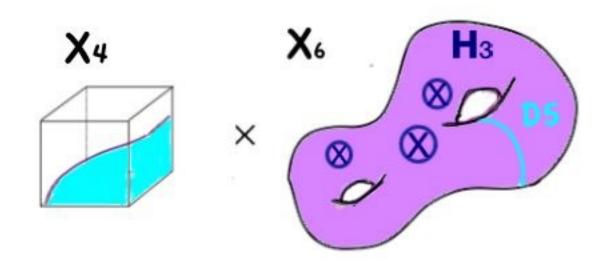
- In 4d, the entries ρ_A are axion polynomials invariant under a discrete shift symmetry. This protection makes them the basic building blocks of V.
- Things become more transparent once we understand the matrix **R**...

Understanding R

- Microscopically, R is determined by the discrete data of the compactification.
 More precisely it is determined by the Freed-Witten anomalies of 4d strings
- Type IIB example: D7-brane wrapping X₆ → 4d string



- Microscopically, R is determined by the discrete data of the compactification.
 More precisely it is determined by the Freed-Witten anomalies of 4d strings
- Type IIB example: D7-brane wrapping X₆ → 4d string



H₃ fluxes create a FW anomaly, cured by D5-branes wrapping P.D. 3-cycle

4d DW ending on 4d string

Martucci & Evslin'07 Berasaluce-Gonzalez et al.'12

Microscopically, R is determined by the discrete data of the compactification.
 More precisely it is determined by the Freed-Witten anomalies of 4d strings

• Type IIB example: D7-brane wrapping $X_6 \rightarrow 4d$ string H₃ fluxes create a FW anomaly, cured by D5-branes wrapping **X**4 P.D. 3-cycle × 4d DW ending on 4d string Martucci & Euslin'07 Berasaluce-Gonzalez et al. 12 NS₅ NS5 Alternatively: Hanany-Witten D7 D5 D7 effect

- Microscopically, R is determined by the discrete data of the compactification.
 More precisely it is determined by the Freed-Witten anomalies of 4d strings
- Macroscopically: C₀ axion lifted by a potential generated by H₃

$$W = \int_{X_6} (F_3 - \tau H_3) \wedge \Omega \qquad \text{V depends on } \tilde{F}_3 = F_3 - C_0 H_3$$

$$\tau = C_0 + i e^{-\phi} \qquad \text{cures FW} \qquad \text{anomaly} \qquad \text{axion coupled} \qquad \text{to D7-brane}$$

$$V \sim G^{ab}(f - c_0 h)_a (f - c_0 h)_b$$

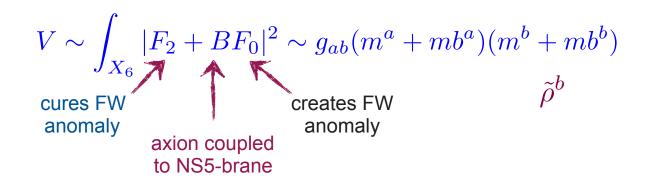
• In type IIA compactifications with RR fluxes, FW anomalies are developed by NS5-branes on 4-cycles:

String		Flux	Domain wall		Rank
type	cycle	type	type	cycle	
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_4 = e_b \tilde{\omega}^b$	D2	_	$\int_{\pi_4^a} F_4 = e_b$
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_2 = m^b \omega_b$	D4	$\pi_2 \in \text{P.D.}[F_2 \wedge \omega_a]$	$\int_{\pi_2} \omega_c = \mathcal{K}_{abc} m^b$
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_0 = m$	D6	$[\pi_4^a]$	m

 In type IIA compactifications with RR fluxes, FW anomalies are developed by NS5-branes on 4-cycles:

String		Flux	Domain wall		Rank
type	cycle	type	type	cycle	
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_4 = e_b \tilde{\omega}^b$	D2	_	$\int_{\pi_4^a} F_4 = e_b$
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_2 = m^b \omega_b$	D4	$\pi_2 \in \text{P.D.}[F_2 \wedge \omega_a]$	$\int_{\pi_2} \omega_c = \mathcal{K}_{abc} m^b$
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_0 = m$	D6	$[\pi_4^a]$	m

For instance: F₀ creates FW anomaly cancelled by D6 DW (~ F₂)



 In type IIA compactifications with RR fluxes, FW anomalies are developed by NS5-branes on 4-cycles:

String		Flux	Domain wall		Rank
type	cycle	type	type	cycle	
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_4 = e_b \tilde{\omega}^b$	D2	_	$\int_{\pi_4^a} F_4 = e_b$
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_2 = m^b \omega_b$	D4	$\pi_2 \in \text{P.D.}[F_2 \wedge \omega_a]$	$\int_{\pi_2} \omega_c = \mathcal{K}_{abc} m^b$
NS5	$[\pi_4^a] \in H_4(\mathcal{M}_6, \mathbb{Z})$	$F_0 = m$	D6	$[\pi_4^a]$	m

$$\begin{array}{c} \text{Can be encoded} \\ \text{in a matrix:} \\ P_a = \begin{pmatrix} 0 & \vec{\delta}_a^t & 0 & 0 \\ 0 & 0 & \mathcal{K}_{abc} & 0 \\ 0 & 0 & 0 & \vec{\delta}_a \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{array}{c} \text{F}_6 \sim \text{D2}_{\text{DW}} \\ \text{F}_4 \sim \text{D4}_{\text{DW}} \\ \text{F}_2 \sim \text{D6}_{\text{DW}} \\ \text{F}_0 \sim \text{D8}_{\text{DW}} \\ \text{anomaly} \end{array}$$

 In type IIA compactifications with RR fluxes, FW anomalies are developed by NS5-branes on 4-cycles:

$$P_{a} = \begin{pmatrix} 0 & \vec{\delta_{a}}^{t} & 0 & 0 \\ 0 & 0 & \mathcal{K}_{abc} & 0 \\ 0 & 0 & 0 & \vec{\delta_{a}} \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \mathbf{R} = e^{-b^{a}} P_{a} = \begin{pmatrix} 1 & -b^{a} & \frac{1}{2} \mathcal{K}_{abc} b^{b} b^{c} & -\frac{1}{3!} \mathcal{K}_{abc} b^{a} b^{c} \\ 0 & \delta_{b}^{a} & -\mathcal{K}_{abc} b^{c} & \frac{1}{2} \mathcal{K}_{abc} b^{a} b^{c} \\ 0 & 0 & \delta_{a}^{b} & -b^{b} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Alternatively: R describes the internal DW charges induced by the B-field
 - → Charge monodromy matrix

$$\begin{pmatrix} \rho_0 \\ \rho_a \\ \tilde{\rho}^a \\ \tilde{\rho} \end{pmatrix} = \begin{pmatrix} 1 & -b^a & \frac{1}{2}\mathcal{K}_{abc}b^bb^c & -\frac{1}{3!}\mathcal{K}_{abc}b^ab^bc \\ 0 & \delta_b^a & -\mathcal{K}_{abc}b^c & \frac{1}{2}\mathcal{K}_{abc}b^ab^c \\ 0 & 0 & \delta_a^b & -b^b \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e_0 \\ e_a \\ m^a \\ m \end{pmatrix} \quad \begin{array}{c} \mathsf{D2}_{\mathsf{DW}} \\ \mathsf{D4}_{\mathsf{DW}} \\ \mathsf{D6}_{\mathsf{DW}} \\ \mathsf{D8}_{\mathsf{DW}} \end{pmatrix}$$

R and discrete shift symmetries

We have that

$$\vec{\rho} = \mathbf{R} \, \vec{q} = e^{-\phi^a P_a} \, \vec{q}$$

Axions of unit period

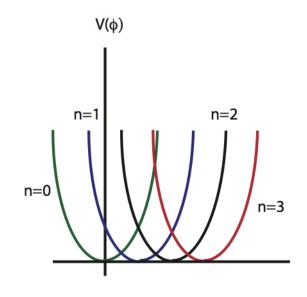
$$\phi^a \sim \phi^a + n^a, \quad n^a \in \mathbb{Z}$$

$$\mathbf{R}(\vec{\phi} + \vec{n}) = \mathbf{R}(\vec{\phi}) \cdot e^{-n^a P_a}$$

Compensated by a shift of flux quanta so that ρ remains invariant

$$\vec{q} \longrightarrow \vec{q}' = e^{n^a P_a} \vec{q}$$

- Generalisation of the discrete symmetry in KS
- Multi-branched scalar potential



p and the superpotential

- Since the discrete shift symmetry is of gauge nature, the superpotential W
 is also invariant under it
- In fact W and ρ_A contain the same information (in the large volume limit):

$$W = \Pi^{t}(\psi) \cdot \vec{q}$$

In our case:

7aylor & Vafa'99

aukov 99

$$W = e_0 - e_a T^a + \frac{1}{2} \mathcal{K}_{abc} m^a T^b T^c - m \frac{1}{6} \mathcal{K}_{abc} T^a T^b T^c$$
$$\Pi^t = (1, -T^a, \frac{1}{2} \mathcal{K}_{abc} T^a T^b, -\frac{1}{6} \mathcal{K}_{abc} T^a T^b T^c)$$

$$W = \left[\mathbf{R}(\phi)^{t-1} \Pi(\psi) \right]^t \cdot \vec{\rho} = \left[\Pi(s) \right]^t \cdot \vec{\rho} = e^{is^a \frac{\partial}{\partial \phi^a}} \left[\Pi^t(0) \cdot \vec{\rho} \right] \equiv e^{is^a \frac{\partial}{\partial \phi^a}} \rho_0$$

N

inv. & flux independent no exponential dep. in ϕ

holomorphicity of W

$$\rho_0 = e_0 - b^a e_a + \frac{1}{2} \mathcal{K}_{abc} m^a b^b b^c - \frac{m}{6} \mathcal{K}_{abc} b^a b^b b^c$$

$$V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$$
 saxions axions fluxes

- The axion-dependent matrix \mathbf{R} defining the invariants ρ_A is specified by discrete, topological data of the compactification. In particular by the FW anomalies developed by 4d string defects.
- In particular, each 4d string corresponds to an integer valued, nilpotent matrix P_a that acts on fluxes and axions and leaves the ρ_A invariant

$$\mathbf{R} = e^{-\phi^a P_a}$$

See also 7. Valenzuela's talk

• This generalises the discrete shift symmetry and multi-branched structure of the KS potential. The corrections to V must be functions of ρ_A and not of V. In principle there could be a correction of the form

$$\kappa^{ABC} \rho_A \rho_B \rho_C$$

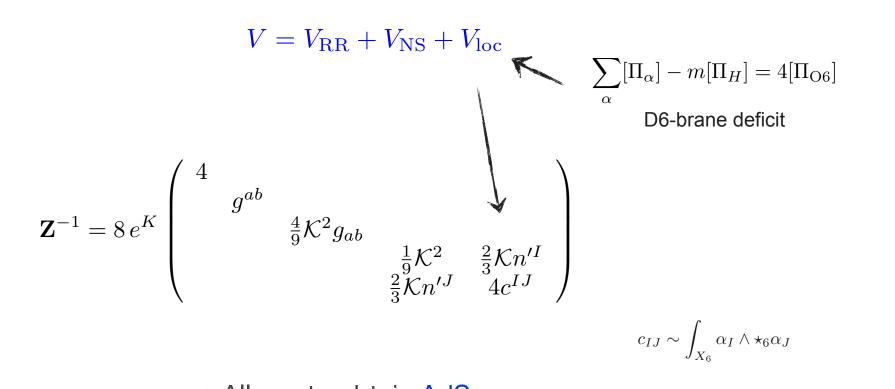
- All this information is gathered in a master polynomial $\rho_0 = W|_{s=0}$
- All these results hold when we add NS-fluxes and D6-branes...

Generalisations

Adding H₃ flux

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

- New 4d strings get FW anomalies (D4's) \leftrightarrow new axions enter V : $\xi^K = \int_{\Lambda_k} C_3$
- Z larger and no longer definite positive



→ Allows to obtain AdS₄ vacua

Adding D6-branes

New fluxes: n_F, n_aⁱ

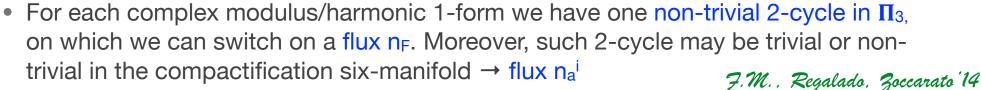
3-cycle deformations X

New fields

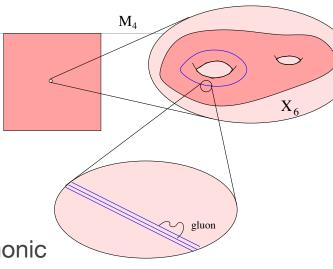
Wilson lines A

$$\Phi = \int_{\Sigma_2} J_c - \int_{\pi_1} A = T^a f_a - \theta$$

$$J_c = B + iJ = T^a \omega_a$$



$$W = e_0 - e_a T^a + \frac{1}{2} \mathcal{K}_{abc} m^a T^b T^c - m \frac{1}{6} \mathcal{K}_{abc} T^a T^b T^c - h_K N^K - \underbrace{\Phi^i (n_{Fi} - n_{ai} T^a)}_{}$$



 π_a

ido, Zoccarato 14 Parta et al. 16

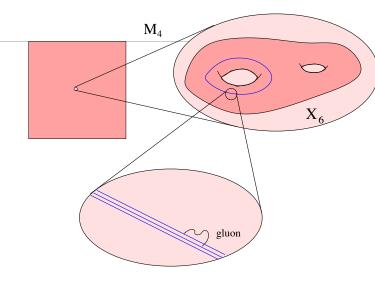
Adding D6-branes

The structure of the potential is

$$V = V_{\text{RR}+\text{CS}} + V_{\text{NS}} + V_{\text{DBI}} + V_{\text{loc}}$$

which again can be rewritten as

$$V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$$
 saxions axions fluxes



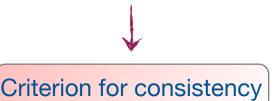
- R depends on the 4d axions b^a , $\hat{\theta}^i = b^a f^i_a \theta^i$, $\xi^K = \operatorname{Re} N^K = \xi'^K (\dots)$
- Z⁻¹ not always invertible

Metric fluxes

- One can also consider type IIA with RR, NS and metric fluxes
- Example worked out: Z₂ x Z₂ orientifold
- Everything works the same $V=\frac{1}{8}\,\vec{q}^t\,\mathbf{R}^t\mathbf{Z}^{-1}\,\mathbf{R}\,\vec{q}$ with q_A now containing the metric fluxes saxions axions fluxes
- **Z**⁻¹ obtained from standard N=1 formula is a priori not invertible: only when the Bianchi identities for the fluxes are imposed
 - V_{4d} SUGRA matches V

Villadoro & Zwirner '05

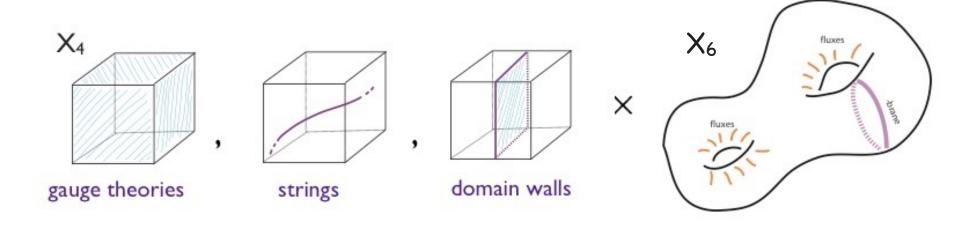
– Z⁻¹ is invertible (needed for 4-form formalism)



Conclusions

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

- We have computed the classical scalar potential for type IIA CY orientifolds in the presence of RR+NS fluxes and D6-branes
- The CY condition is not essential, but it gives us the spectrum of moduli, internal fluxes and 4d defects



Conclusions

$$V = \frac{Z^{AB}}{8} \varrho_A \varrho_B$$

- We have computed the classical scalar potential for type IIA CY orientifolds in the presence of RR+NS fluxes and D6-branes
- The CY condition is not essential, but it gives us the spectrum of moduli, internal fluxes and 4d defects
- We have found a bilinear structure and a triple factorisation $V = \frac{1}{8} \vec{q}^t \mathbf{R}^t \mathbf{Z}^{-1} \mathbf{R} \vec{q}$ between saxions, unit period axions and quantised fluxes
- Microscopically, this comes from gauge invariance (gauge inv. fluxes, FW, HW)
- Macroscopically, this translates into a discrete shift symmetry that relates different branches of the scalar potential V, and defines the invariants ρ_A that any flux-dependent quantity must defend on, even after UV corrections
- To connect with the 4-form formalism **Z**⁻¹ must be invertible. This seems to be related to the consistency conditions between different fluxes.

Instituto de Aísica Teórica UAM-CSIC presents: Vistas over the Swampland

Madrid, 19-21 September 2018

https://workshops.ift.uam-csic.es/swampland

Swamp lookouts

· 1974年 - 1977年 - 1977年 - 1978年 - 197

- N. Arkani-Hamed (IAS Princeton)
- T. Banks (Santa Cruz & Rutgers U.)
- R. Blumenhagen (MPI Munich)
- T. Crisford (DAMTP Cambridge)
- U. Danielsson (Uppsala U.)
- A. Hebecker (Heidelberg U.)
- M. Kleban (New York U.)
- D. Lüst (LMU & MPI Munich)
- M. Montero (ITP Utrecht)
- E. Palti (MPI Munich)
- M. Reece (Harvard U.)
- G. Remmen (UC Berkeley)
- T. Rudelius (IAS Princeton)
- G. Shiu (UW Madison)
- P. Soler (Heidelberg U.)
- C. Vafa (Harvard U.)
- I. Valenzuela (ITP Utrecht)

程度 形态 / 種類成分

T. Van Riet (KU Leuven)

Física Teórica

Swamp rangers

L. E. Ibáñez F. Marchesano A. M. Uranga

