A systematic mass insertion expansion for lepton violating decays in the MSSM

Zofia Fabisiewicz

Institute of Theoretical Physics, University of Warsaw

4.07.2018, String Pheno

Based on the work by
A. Crivellin, ZF, W. Materkowska, U. Nierste, S. Pokorski & J. Rosiek
arXiv: hep-ph 1802.06803
1 Motivation
2 Methods for flavor calculations
3 Results
4 Conclusions
Motivation

PHYSICS

- FCNC processes involving leptons are strictly forbidden in the SM ($m_\nu = 0$).
- LFV may serve as clue towards New Physics.
Motivation

PHYSICS

- FCNC processes involving leptons are strictly forbidden in the SM ($m_\nu = 0$).
- LFV may serve as clue towards New Physics.

MATHS

- Use tools that have not been available earlier.
- First systematic discussion of the **mass insertion approximation**.
- Recover the dependency on the Lagrangian parameters.
Upper bounds on LFV processes

<table>
<thead>
<tr>
<th>Decay</th>
<th>Experimental upper bound</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \to e\gamma$</td>
<td>3.3×10^{-8}</td>
<td>90%</td>
</tr>
<tr>
<td>$\tau \to \mu\gamma$</td>
<td>4.4×10^{-8}</td>
<td>90%</td>
</tr>
<tr>
<td>$\mu \to e\gamma$</td>
<td>5.7×10^{-13}</td>
<td>90%</td>
</tr>
<tr>
<td>$Z \to \mu e$</td>
<td>7.5×10^{-7}</td>
<td>95%</td>
</tr>
<tr>
<td>$Z \to \mu \tau$</td>
<td>1.2×10^{-5}</td>
<td>95%</td>
</tr>
<tr>
<td>$Z \to \tau e$</td>
<td>9.8×10^{-6}</td>
<td>95%</td>
</tr>
<tr>
<td>$\mu \to e^- e^+ e^-$</td>
<td>1.0×10^{-12}</td>
<td>90%</td>
</tr>
<tr>
<td>$\tau \to e^- e^+ e^-$</td>
<td>2.7×10^{-8}</td>
<td>90%</td>
</tr>
<tr>
<td>...</td>
<td>$\sim 10^{-8}$</td>
<td></td>
</tr>
<tr>
<td>$H \to e\tau$</td>
<td>6.1×10^{-3}</td>
<td>90%</td>
</tr>
<tr>
<td>$H \to \mu\tau$</td>
<td>2.5×10^{-3}</td>
<td>90%</td>
</tr>
<tr>
<td>$H \to \mu e$</td>
<td>3.6×10^{-4}</td>
<td>90%</td>
</tr>
</tbody>
</table>

Future sensitivity will improve \rightarrow important to have the tools for fast, precise calculations.
Lepton flavor violating processes

Use the correlations between different processes to highlight new experimental opportunities for LFV searches.
Mass insertions
Off-diagonal elements, both flavor violating and flavor conserving, of the mass matrices of SUSY particles.

\[
\Delta_{LL}^{IJ} = \frac{(M_{LL}^{2})^{IJ}}{\sqrt{(M_{LL}^{2})^{II}(M_{LL}^{2})^{JJ}}}
\]

\[
\Delta_{RR}^{IJ} = \frac{(M_{RR}^{2})^{IJ}}{\sqrt{(M_{RR}^{2})^{II}(M_{RR}^{2})^{JJ}}}
\]

\[
\Delta_{LR}^{IJ} = \frac{A_{I}^{IJ}}{((M_{LL}^{2})^{II}(M_{RR}^{2})^{JJ})^{1/4}}
\]

\[
\Delta_{LR}^{IJ} = \frac{A_{I}^{IJ}}{((M_{LL}^{2})^{II}(M_{RR}^{2})^{JJ})^{1/4}}\]

(1)

\[M_{LL}^{2}, M_{RR}^{2}\] - slepton soft mass matrices
\[A_{I}, A_{I}^{'}\] - trilinear terms.

Write down the amplitude in terms of penguin Wilson coefficients

\[
F^{IJ} = \frac{1}{(4\pi)^{2}} \left(F_{LL}^{IJ}\Delta_{LL}^{IJ} + F_{RR}^{IJ}\Delta_{RR}^{IJ} + F_{ALR}^{IJ}\Delta_{LR}^{IJ} + F_{BLR}^{IJ}\Delta_{LR}^{IJ} + F_{ALR}^{IJ}\Delta_{LR}^{IJ} + F_{BLR}^{IJ}\Delta_{LR}^{IJ} \right) .
\]

(2)
Our method

1. Expand the amplitude in flavor violating off-diagonal slepton mass insertions (Δ's) performed in the first order in Δ's.

2. Expand of Δ’s coefficients in flavor conserving off-diagonal terms of all SUSY particles
 → sleptons (so-called A terms)
 → gauginos

We can do this using the Flavor Expansion Theorem (FET) and the newly-developed Mathematica MassToMI package

The use of the symbolic package allows us to:

- perform the required 3rd order MI expansion in a fully automatized way.
- we do not need to make any assumptions upon degeneracy or hierarchy between SUSY particles (contrary to other analyses).
- obtain cancellations between different terms → the result is more compact.
- include terms scaling down with SUSY mass scale like ν^2/M^2 or slower (M - SUSY mass parameters i.e. M_1, M_2, μ, diagonal soft slepton masses).
To compare our expansion we also performed calculations in the mass-eigenstates basis.

F_{MI} - mass-insertion formfactor

F_{ME} - mass-eigenstates formfactor

An example: non-degenerated SUSY spectrum

Transition between the 2nd and 3rd generation

Initial setup ([m] = GeV):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tan \beta$</td>
<td>5</td>
</tr>
<tr>
<td>μ</td>
<td>$200 + 100i$</td>
</tr>
<tr>
<td>M_1</td>
<td>150</td>
</tr>
<tr>
<td>M_2</td>
<td>300</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
A_{\mu\mu} &= A'_{\mu\mu} = 0.1 \sqrt{m_{\tilde{\mu}_L} m_{\tilde{\mu}_R}} \\
A_{\tau\tau} &= A'_{\tau\tau} = 0.1 \sqrt{m_{\tilde{\tau}_L} m_{\tilde{\tau}_R}} \\
\end{align*}
\]

(3)

Scale up to 2 TeV. Plot

\[
\Delta F = \left| \frac{F_{MI}}{F_{ME}} \right| - 1
\]

(4)

as a function of the average slepton mass.
Accuracy of MI expansion for penguin amplitudes.

L, R: effective couplings, non-degenerated SUSY spectrum (3) for both ME and MI expressions

L, R: ME expressions (3), but universal degenerated spectrum for MI expressions

\[M - \text{average SUSY mass scale}, \ (M = M_2 = m_{\tilde{\mu}_L} = m_{\tilde{\mu}_R}) \]
Results: an example

Bounds on the mass insertions from LFV for SUSY scale $M = 400$ GeV and $\tan \beta = 2$

<table>
<thead>
<tr>
<th>Process</th>
<th>Δ_{IJ}^{LL}</th>
<th>Δ_{IJ}^{RR}</th>
<th>Δ_{IJ}^{LR}</th>
<th>Δ_{IJ}^{RL}</th>
<th>$\Delta_{IJ}^{LL'}$</th>
<th>$\Delta_{IJ}^{RR'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \to \mu \gamma$</td>
<td>$5.3 \cdot 10^{-1}$</td>
<td>$3.3 \cdot 10^{+0}$</td>
<td>$9.1 \cdot 10^{-2}$</td>
<td>$9.1 \cdot 10^{-2}$</td>
<td>$4.5 \cdot 10^{-2}$</td>
<td>$4.5 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>$\tau \to \mu \mu \mu$</td>
<td>$7.5 \cdot 10^{+0}$</td>
<td>$4.0 \cdot 10^{+1}$</td>
<td>$1.3 \cdot 10^{+0}$</td>
<td>$1.3 \cdot 10^{+0}$</td>
<td>$6.4 \cdot 10^{-1}$</td>
<td>$6.4 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>$\tau \to \mu e^+ e^-$</td>
<td>$6.7 \cdot 10^{+0}$</td>
<td>$3.6 \cdot 10^{+1}$</td>
<td>$1.1 \cdot 10^{+0}$</td>
<td>$1.1 \cdot 10^{+0}$</td>
<td>$5.6 \cdot 10^{-1}$</td>
<td>$5.6 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>$Z^0 \to \tau \mu$</td>
<td>$1.3 \cdot 10^{+3}$</td>
<td>$2.0 \cdot 10^{+5}$</td>
<td>$1.7 \cdot 10^{+4}$</td>
<td>$1.6 \cdot 10^{+4}$</td>
<td>$4.3 \cdot 10^{+3}$</td>
<td>$3.9 \cdot 10^{+3}$</td>
</tr>
<tr>
<td>$h \to \tau \mu$</td>
<td>$1.9 \cdot 10^{+2}$</td>
<td>$9.0 \cdot 10^{+2}$</td>
<td>$1.3 \cdot 10^{+3}$</td>
<td>$1.4 \cdot 10^{+3}$</td>
<td>$6.0 \cdot 10^{+0}$</td>
<td>$6.0 \cdot 10^{+0}$</td>
</tr>
</tbody>
</table>

$l \to l' \gamma$ - strongest bounds.
Non-decoupling effects in Higgs decays

Terms \sim lepton Yukawa couplings Y_l or to the non-holomorphic trilinear slepton soft terms $\sim A_l'$ do not decouple in the limit of heavy SUSY masses and can be potentially large.

\rightarrow Related to the 2HDM structure of the MSSM.

For large SUSY masses and small mixing angles α, β the Higgs decay is more constraining than the $\mu \rightarrow e\gamma$.
Conclusions

1. Newly developed calculation tools used to obtain a full expansion of the amplitudes in terms of mass insertions.

2. Our expansion is completely systematic in powers of ν^2/M^2 and ν^2/M_A^2.

3. We can observe the cancellations between different lower-order terms.

4. Also quantitatively more can be understood than using ME basis.

5. We observed the non-decoupling effects in Higgs decays, where the maximal $BR(h \rightarrow ll') \sim O(10^{-4})$, not much lower than the current experimental sensitivities.

arXiv: hep-ph 1802.06803
Sources of flavor violation in the MSSM

1. Slepton mass matrix

The slepton and sneutrino mass and mixing matrices are defined as:

\[
Z_L^\dagger \left(\begin{array}{cc}
(M_L^2)_{LL} & (M_L^2)_{LR} \\
(M_R^2)_{LR} & (M_R^2)_{RR}
\end{array} \right) Z_L = \text{diag} \left(m_{L_1}^2, \ldots, m_{L_6}^2 \right)
\]

(5)

\[
(M_L^2)_{LL} = (M_{LL}^2)^T + \frac{M_Z^2 \cos 2\beta}{2} (1 - 2c_W^2) \hat{1} + \frac{v_1^2 Y_l^2}{2}
\]

(6)

\[
(M_L^2)_{RR} = M_{RR}^2 - \frac{M_Z^2 \cos 2\beta}{2} s_W^2 \hat{1} + \frac{v_1^2 Y_l^2}{2}
\]

(7)

\[
(M_L^2)_{LR} = \frac{1}{\sqrt{2}} \left(v_2 (Y_l \mu^* - A'_l) + v_1 A_l \right)
\]

(8)

where M_{LL}^2, M_{RR}^2, A_l, A'_l and $Y_l = -\sqrt{2} m_l/v_1$ are 3 × 3 matrices in flavor space.
2. Gaugino mass matrices

The neutralino and chargino mass and mixing matrices can be written down as:

\[Z_N^T \begin{pmatrix} M_1 & 0 & -\frac{ev_1}{2c_W} & \frac{ev_2}{2c_W} \\ 0 & M_2 & \frac{ev_1}{2s_W} & \frac{ev_2}{2s_W} \\ -\frac{ev_1}{2c_W} & \frac{ev_2}{2s_W} & -\mu \\ 0 & -\mu & 0 \end{pmatrix} Z_N = \operatorname{diag}(m_{\chi_1^0}, \ldots, m_{\chi_4^0}) \quad (9) \]

\[(Z_-)^T \begin{pmatrix} M_2 & \frac{ev_2}{\sqrt{2s_W}} \\ \frac{ev_1}{\sqrt{2s_W}} & \mu \end{pmatrix} Z_+ = \operatorname{diag}(m_{\chi_1}, m_{\chi_2}) \quad (10) \]
3. Higgs-slepton-slepton vertex contains the A_I, A'_I terms

What are the non-holomorphic A'_I terms?

$$\mathcal{L} \sim A'_I^{IJ} H_i^{2*} L_i^I R^J + A'_d^{IJ} H_i^{2*} Q_i^I D^J + A'_u^{IJ} H_i^{1*} Q_i^I U^J + H.c.$$ (11)

- Trilinear couplings of the scalar fields
- different in the form from the Yukawa terms in the superpotential
Divided differences

\[f^{[0]}(x) = f(x) \]
\[f^{[1]}(x, y) = \frac{f^{[0]}(x) - f^{[0]}(y)}{x - y} \]
\[f^{[2]}(x, y, z) = \frac{f^{[1]}(x, y) - f^{[1]}(x, z)}{y - z} \]

\[\ldots \quad (12) \]

symmetric under permutation of any of its \(n \) arguments

\[f^{[k]}(x_0, \ldots, x_k) \equiv f(\{x_0, \ldots, x_k\}) \quad (13) \]

\[g(\{x_1, x_2\}, \{y_1, y_2, y_3, y_4\}, z) \quad (14) \]
Divided difference of \(n \)-point function is a \((n+1)\)-point function

\[
B_0(m_1, \{m_2, m_3\}) = B_0(\{m_1, m_2\}, m_3) = C_0(m_1, m_2, m_3)
\]
\[
B_0(m_1, \{m_2, m_3, m_4\}) = C_0(m_1, m_2, \{m_3, m_4\}) = D_0(m_1, m_2, m_3, m_4)
\]

\[
\ldots
\]

We can now find cancellations between different terms.
→ Identify the lowest non-vanishing order of the mass insertion for every process.