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o Inflation is the standard paradigm of early universe
T-Duality: Key Cosm0|ogy'
Symmetry of - o
Shing Theory o Inflation solves conceptual problems of Standard Big
Noinsingular Bang C08m0|Ogy
Cosmology . . . .

o Inflation predicts an almost scale-invariant spectrum of

‘ primordial cosmological perturbations with a small red
String Gas tilt (Chibisov & Mukhanov, 1981).
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Structure o Fluctuations are nearly Gaussian and nearly adiabatic.
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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is
located to the right of the line M (¢); the region of stability to the left. The two additional lines of
the graph demonstrate the temporal evolution of density perturbations of matter: growth until the
moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is
apparent that at the moment of recombination perturbations corresponding to different masses

correspond to different phases.
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Hubble Radius vs. Horizon

Horizon: Forward light cone of a point on the initial
Cauchy surface.

@ Horizon: region of causal contact.
o Hubble radius: /y(t) = H~'(t) inverse expansion rate.

@ Hubble radius: local concept, relevant for dynamics of
cosmological fluctuations.

@ In Standard Big Bang Cosmology: Hubble radius =
horizon.

o In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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Criteria for a Successful Early Universe
Scenario

o Horizon > Hubble radius in order for the scenario to
solve the “horizon problem” of Standard Big Bang
Cosmology.

o Scales of cosmological interest today originate inside
the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.

o Squeezing of fluctuations on super-Hubble scales in
order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Position Operators

Position operators (dual to momenta)

x>= 3 explix - p)lp >
p

Dual position operators (dual to windings)

Note:

X >=")"exp(iX - w)|w >
w

- - 1
x>=|x+2rR>, |X>= |x+27r§>
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Heavy vs. Light Modes

o R > 1: momentum modes light.
o R < 1: winding modes light.

@ R > 1:length measured in terms of |x >.
Q

Q

R < 1: length measured in terms of |x >

R ~ 1: both |x > and |x > important.
Conclusion: At string scale densities usual effective field
theory (EFT) based on supergravity will break down.

Conclusion: If an effective field theory description is valid, it
must be an EFT in 18 spatial dimensions.

Double Field Theory: Promising candidate for string
cosmology.
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Geodesic Completeness

Recall: For each dimension of the underlying topological

space there are two position operators [R.B. and C. Vafa]:

o x: dual to the momentum modes
o X: dual to the winding modes

We measure physical length in terms of the light degrees

of freedom.

R for R>1,

le’ for Rk 1.
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: related by duality.
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Interpretation

o Expansion of the scale factor in the dual spatial
directions as time decreases = expansion in the
regular directions as time increases.

o Dynamics of the dual spatial dimensions as t
decreases is measured as expansion when the dual
time t; = 1 decreases.

Proposal:

b(t) = for t>1,

() =

t
1
? for t<<1

Conclusion: Point particle geodesics can be extended in
both time directions to infinite proper time.
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Limiting Solutions

Large radius limit:

p(alarge) — po(a/ao

Small radius limit:

Ansatz:

p(asmall) — po(a/ap

)—(d—H)

—d+1
)+

t

(g)a
BIn(t/t),

)
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Large radius limit:

p(alarge) — po (a/ap)@*"

Small radius limit:

Ansatz:

Where

p(asmall) — po (a/ag) ™

an ~ (g)°

o(t) ~ BIn(t/k),

¢ = ¢ — din(a)

)
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Tualty: Key o As t — 0 the energy of the string gas drifts to winding
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e o Physical space is measured in terms of winding modes.
N. o In terms of winding modes the contraction as t — 0
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@ Conclusion: nonsingular cosmology.
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Next Step: Double Field Theory as a

Background for String Gas Cosmology

Idea Describe the low-energy degrees of freedom with an
action in doubled space in which the T-duality symmetry is
manifest.

Candidate for dynamics in the Hagedorn phase: Double
Field Theory [W. Siegel, 1993, C. Hull and B. Zwiebach,
2009, L. Freidel et al., 2017]

S - / dxdke29R,

1 1
R = gHMNaMHKLaNHKL—E/HMN(?M’HKL(?K’HNL

AHMN g Ond — OpdNHYN — aMN o), dond
1
48M’HMN6Nd -+ §77MN77KL8M5A KaNEB LHaB -

+ +
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Add matter action Sy, to the background action of SGC:

S = / dxdie2R + S,
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Idea: make use of the new symmetries and new degrees of
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String Gas Cosmology

Idea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new
theory of the very early universe.

Assumption: Matter is a gas of fundamental strings.

Assumption: gs < 1.

Key points:

o New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

o New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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Dynamical Decompactification

o Begin with all 9 spatial dimensions small, initial
temperature close to Ty — winding modes about all
spatial sections are excited.

o Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

= %%/

o Decay only possible in three large spatial dimensions
(see also M. Sakellariadou).

@ — dynamical explanation of why there are exactly three

large spatial dimensions.
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Dynamical Decompactification

G o Begin with all 9 spatial dimensions small, initial

R. Branden- temperature close to Ty — winding modes about all
erger spatial sections are excited.

Introduction o Expansion of any one spatial dimension requires the

T-Duality: Key annihilation of the winding modes in that dimension.

Symmetry of . .

String Theory i F< " \_/ ]
S/

Noinsingular \

Cosmology \ i C)

o Decay only possible in three large spatial dimensions

String Gas a
Cosmology (see also M. Sakellariadou).

Siiucture @ — dynamical explanation of why there are exactly three
Coneusons large spatial dimensions.

Note: For R — 0 there is an analogous decompactification
mechanism which only allows three dual dimensions to be
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Moduli Stabilization in SGC

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

@ winding modes prevent expansion

@ momentum modes prevent contraction

0 — Ve(R) has a minimum at a finite value of
R, — Hmin

@ in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at Ry,

0 — Vert(Rmin) =0

@ — size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

@ enhanced symmetry states
@ — harmonic oscillator potential for 6
@ — shape moduli stabilized
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Dilaton stabilization in SGC

@ The only remaining modulus is the dilaton.

o Make use of gaugino condensation to give the dilaton a
potential with a unique minimum.

o — diltaton is stabilized.

o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].
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Dilaton stabilization in SGC

@ The only remaining modulus is the dilaton.

@ Make use of gaugino condensation to give the dilaton a
potential with a unique minimum.

o — diltaton is stabilized.

o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].

o Gaugino condensation induces (high scale)
supersymmetry breaking [S. Mishra, W. Xue, R.B. and
U. Yajnik, 2012].
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Structure formation in string gas cosmology
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N.B. Perturbations originate as thermal string gas
fluctuations.
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Dl ey o Calculate matter correlation functions in the Hagedorn
Symmetry of phase (neglecting the metric fluctuations)

String Theory
Nt o For fixed k, convert the matter fluctuations to metric

e fluctuations at Hubble radius crossing t = t(k)

m o Evolve the metric fluctuations for t > t;(k) using the
String Gas usual theory of cosmological perturbations
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Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbations
and gravitational waves:

ds? = 22(n)((1 +2)dn? — [(1 — 20)5; + hyldx'dx’) .
Inserting into the perturbed Einstein equations yields

([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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Symmetry of -

S e (00%) = ggCv-

el Key ingredient: For string thermodynamics in a compact
Gamp space
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Power spectrum of cosmological fluctuations

Po (k)

8G?k~ 1 < |op(k)|? >
8G?k? < (6M)? >
8G?k~* < (6p)? >R

T 1
ol 1
Sl
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Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G*k* < (6p)? >R

T 1
_ 2 1
- &G B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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S
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Key ingredient for string thermodynamics

T
String Gas < ‘Ej(R)|2 S Ay 3_4(1 _ T/TH)

Cosmology IS R
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Key features:

Conclusions
o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Prediction: Running of the Spectrum of
Cosmological Perturbations

Running

_ dPInPy (k)
Qs = W‘k:aH

o For Inflation: as ~ (1 — ng)?
o For String Gas Cosmology: as ~ (1 — ns)

— String Gas Cosmology predicts a parametrically larger
running.
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Conclusions

o Cosmology of string theory must take into account
the key symmetries of string theory, in particular the
T-duality symmetry.

o Standard effective field theory of supergravity will break
down in the very early universe.

o Double Field Theory may provide a better description of
the background for string cosmology.

o Cosmological evolution is nonsingular.

@ Our universe emerges from an early Hagedorn phase.

o Thermal string fluctuations in the Hagedorn phase yield
an almost scale-invariant spectrum of cosmological
fluctuations.

o Characteristic signal: blue tilt in the spectrum of
gravitational waves.
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