DAI-FREED ANOMALIES [N
PARTICLE PHYSICS

Miguel Montero
ITE Utrecht University

(Work in collaboration with Inaki Garcia-Etxebarria)

Stringpheno 2018

N2 \\Wf/ e
- - 7 N3 ~<= trecht University
SHE N



R REC AR

Inaki just explained the Dai-

Freed formalism to compute

anomalies of fermion systems in d Yy
dimensions.

Anomalies cancel if exp(2TTi Ny) is independent of the choice of Y

Sa=el 105>

To ensure this, we must have exp(21Ti Ny)=1 on any allowed
(d+1) manifold.
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Dai-Freed anomalies have only been studied in a few
systems.

A priori, any gauge theory could be Dai-Freed
anomalous!

This talk: Apply Dai-Freed to symmetries of
interest in particle physics.

Is the Standard Model Dai-Freed anomalous!?
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Once local anomalies cancel, n is a bordism invariant:

v Q Q exp(2miny, ) = exp(2winy;, )
1

Yo
Bordism is an equivalence relation, which defines bordism groups
Spin
Vi1 (BG)
These classify (d+1)-dimensional manifolds, with a principal G-bundle,
modulo bordism (bundle extends over bordism too)

Computed using AHSS.

N is a group homomorphism from the relevant bord. group to U(I).



GENERAL STRATEGY

Compute relevant bordism group

If it vanishes, there is no new anomaly.
Find a nontrivial manifold Y, compute n.

If it vanishes, there is no new anomaly.

If N is nonvanishing, there is an anomaly.
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THE STANDARD MODEL

Experiments only probe the gauge algebra of the SM.There are
four possibilities [Tong'17...]

SU(3) x SU(2) x U(1)
T :

' € {1, ZQ, Zg, Z@}

The discrete group [ acts trivially on the SM fermions.

[ =Zs is “maximal”: Includes bundles for any other choice of I'.

This is also the group that embeds in SU(5).



The SM fermion spectrum falls into SU(5) representations.

Any (SU(3) x SU(2) x U(1))/Ze bundle is a SU(5) bundle
too!

As far as anomalies are concerned, the SM is equivalent to the
SU(5) GUT. But since

Q2P (BSU(5)) = 0
The SM is free of Dai-Freed anomalies

Similar situation for Spin(10).



To get an anomaly, we need to look at more general spaces.
What about the SM in non-orientable spaces?

Only makes sense if one assumes CP breaking in SM is
spontaneous.

Need a Pin structure to define fermions, which can change
cob. groups, e.g. QgPin-=Z1¢, but QeSPIN=0.

Majorana masses require a Pin+ structure [serg et 0.



To get an anomaly, we need to look at more general spaces.
What about the SM in non-orientable spaces?

Only makes sense if one assumes CP breaking in SM is
spontaneous.

Need a Pin structure to define fermions, which can change
cob. groups, e.g. QgPin-=Z1¢, but QeSPIN=0.

Majorana masses require a Pin+ structure [serg etaio].

We have again

QOPin" (BSU(5)) = QF™ (BSU(5)) = 0
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Last try: SM + right-handed neutrinos + gauged (B-L).

Since all fermion charges under (B-L) are odd, we can now
consider the SM on Spinc manifolds or even Pine
manifolds

Still,
Q2P (BSU(5)) = Q™ (BSU(5)) = 0

so we find no anomalies in the SM.
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Lucky! Bordism groups & 1 invariants already computed by
mathematicians [Bahri-Gilkey ¢ 87, Gilkey '89, Gilkey-Botvinnik '94] both for
Spin and Spin¢ cases. They are nontrivial.

We can compare with known anomalies of discrete
symmetries. [Ibafiez-Ross* 91]. T hese were originally obtained by
demanding that the Z, embeds in a U(l).

QZSi = O mod N, Zs? = Omod N

Only linear constraints are UV-independent [Banks-Dine* 91]



There is a nontrivial Dai=-Freed anomaly coming from

evaluating the 1 in a generalized lens space [eahri-Gilkey 86, Gilkey *89, Gilkey-
Botvinnik *94].

We get constraints which are cubic in the charges: A “remnant”
of the cubic Ibanez-Ross constraint

Z —45° + (N? + 3)s; = mod 24N

Are these UV-sensitive?



There is a nontrivial Dai-Freed anomaly coming from

evaluating the N in a generalized lens space [Bahri-Gilkey 86, Gilkey '89, Gilkey-
Botvinnik *94].

We get constraints which are cubic in the charges: A “remnant”
of the cubic Ibanez-Ross constraint

Z —45° + (N? + 3)s; = mod 24N
Are these UV-sensitive! YES

Topological GS term that can forbid some of the bundles

[Ibanez ’92, Garcia-Etxebarria-Hayashi-Ohmori-Tachikawa-Yonekura ’1 7]



For Z3,
Z s; = 0mod 3 (Linear IR)

Z s; = 0mod 9 (Dai-Freed)

This one has phenomenological consequences: Proton triality (and also
hexality) in the MSSM is a IR-anomaly free Z3 symmetry, but it has a mod
9 anomaly
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Dai-Freed anomaly cancellation requires 3k generations.

Consistent with previous results [Dreiner et al.’04]: U(|) embedding of proton
triality only with gen. dependent charges.



SM = TOPR, SUPERCONDUCTOR

Topological superconductor: st example of Dai-Freed
anomaly [Kapustin-Thorgren-Turzillo-Wang ’ | 4,Witten 015, Hsieh-Cho-Ryu ’16]

T-invariant 3d fermions. Global grav. anomaly requires
multiple of 8.

Dai-Freed enhances to a multiple of 16, because

Pin™
Q4 = Z16

# of fermions/ generation in SM + rh neutrinos = |6. Not a
coincidence!



The SM + rh neutrinos has a Z4 symmetry (center of Spin(10))
that acts on every fermion by multiplication by i.

We can use this to put the SM on manifolds with a Spin?

Structure [Tachikawa-Yonekura’18]. Transition functions of the spinors in
(Spin x Z4)/Z,

Massless fermions

The Smith /
homomorphism
maps
ST et
Qgizln R ng Profile of Higgs field B

Physical interpretation: Higgsing the Z4 w. a nontrivial bundle,
there is a 3d locus with massless Pin* fermions.
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| would like to end with a perhaps intriguing connection. The MSSM
spectrum also has the same Z4 symmetry acting on all fermions by
multiplication by i.

# of fermionic superpartners:
|2 gauginos (8+3+1)
4 higgsinos
Total: | 6! Dai-Freed anomaly vanishes.

Only works because of the detailed structure of SM: Dim. of gauge group
+ EVVSB sector.

No obvious relation to GUT’s. Related to reflections of compactification
manifold? [Tachikawa-Yonekura ’| 8]



CONCLUSIONS

We've explored a new kind of anomaly in four dimensional gauge theories of
phenomenological interest.

SM and GUT’s are anomaly free. Can put SM on non-Spin manifolds (related
to topological superconductor).

New anomalies for discrete symmetries e.g. proton triality.
Outlook
We only checked a few theories!

Is the Z4 in the MSSM telling us something?
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