DAI-FREED ANOMALIES IN PARTICLE PHYSICS

Miguel Montero

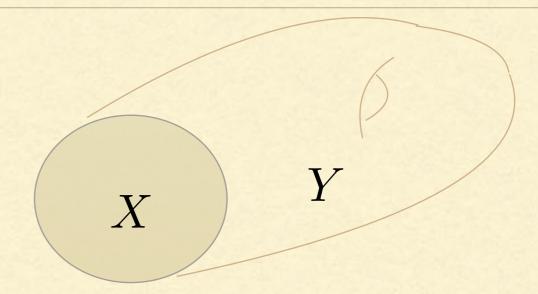
ITF, Utrecht University

(Work in collaboration with Iñaki García-Etxebarria)

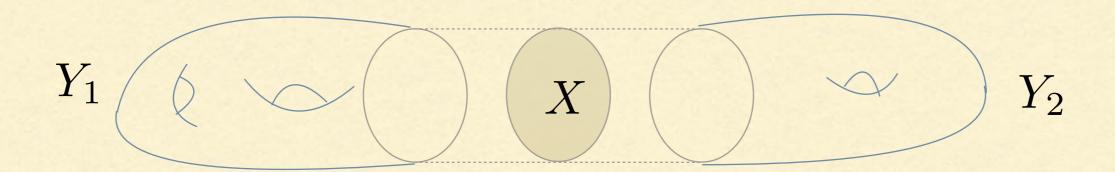
Stringpheno 2018

QUICK RECAP

• Iñaki just explained the Dai-Freed formalism to compute anomalies of fermion systems in d dimensions.



• Anomalies cancel if $exp(2\pi i \eta_Y)$ is independent of the choice of Y



To ensure this, we must have $\exp(2\pi i \eta_Y)=1$ on any allowed (d+1) manifold.

A priori, **any** gauge theory could be Dai-Freed anomalous!

A priori, **any** gauge theory could be Dai-Freed anomalous!

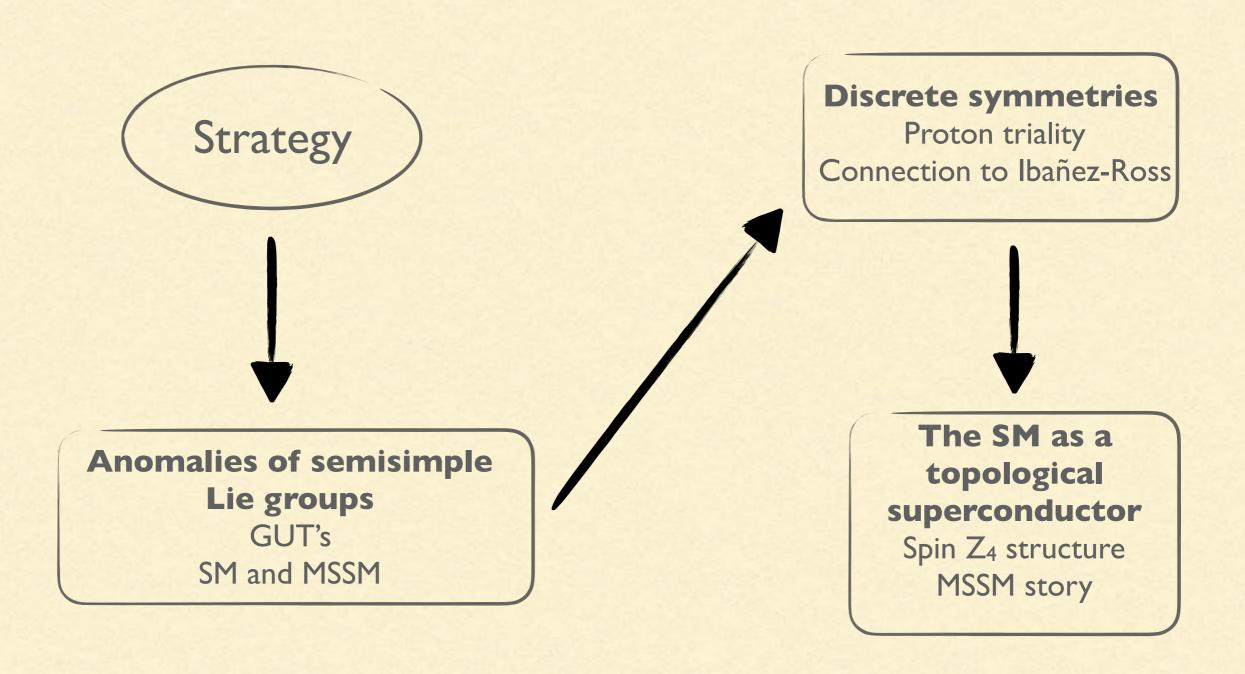
This talk: Apply **Dai-Freed** to symmetries of interest in **particle physics**.

A priori, **any** gauge theory could be Dai-Freed anomalous!

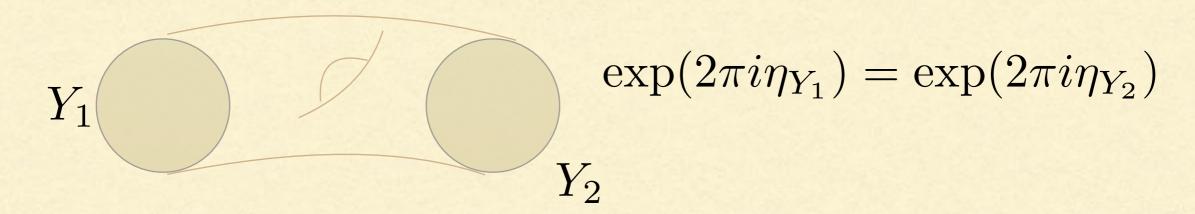
This talk: Apply **Dai-Freed** to symmetries of interest in **particle physics**.

Is the Standard Model Dai-Freed anomalous?

PLAN OF THE TALK



Once local anomalies cancel, η is a bordism invariant:



Bordism is an equivalence relation, which defines bordism groups

$$\Omega_{d+1}^{Spin}(BG)$$

These classify (d+1)-dimensional manifolds, with a principal G-bundle, modulo bordism (bundle extends over bordism too)

- Computed using AHSS.
- η is a **group homomorphism** from the relevant bord. group to U(1).

GENERAL STRATEGY

- Compute relevant bordism group
 - If it vanishes, there is no new anomaly.
- Find a nontrivial manifold Y, compute η.
 - If it vanishes, there is no new anomaly.
- If η is nonvanishing, there is an anomaly.

SEMISIMPLE LIE GROUPS

G	$oldsymbol{\Omega_{\mathbf{d}}^{\mathbf{Spin}}(\mathbf{BG})}$								
G	0	1	2	3	4	5	6	7	8
SU(2)	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	0	$4\mathbb{Z}$
SU(n > 2)	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	<u> </u>		
USp(2k > 2)	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	0	$5\mathbb{Z}$
U(1)	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus \mathbb{Z}$	0	$\mathbb{Z}\oplus\mathbb{Z}$	0		-	_
$Spin(n \ge 8)$	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	-	-) (-) (-)
$SO(n \ge 3)$	Z	\mathbb{Z}_2	$e(\mathbb{Z}_2,\mathbb{Z}_2)$	0	$e(\mathbb{Z},\mathbb{Z}\oplus\mathbb{Z}_2)$	0		-	_
E_6, E_7, E_8	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$
G_2	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	-		
F_4	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	0	0	<u>-</u>

SEMISIMPLE LIE GROUPS

G	$oldsymbol{\Omega_{\mathbf{d}}^{\mathbf{Spin}}(\mathbf{BG})}$								
	0	1	2	3	4	5	6	7	8
SU(2)	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	0	$4\mathbb{Z}$
SU(n > 2)	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	<u> </u>	-	
USp(2k > 2)	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	\mathbb{Z}_2	\mathbb{Z}_2	0	$5\mathbb{Z}$
U(1)	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus \mathbb{Z}$	0	$\mathbb{Z}\oplus\mathbb{Z}$	0	-	-	_
$Spin(n \ge 8)$	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	-	-	=
$SO(n \ge 3)$	Z	\mathbb{Z}_2	$e(\mathbb{Z}_2,\mathbb{Z}_2)$	0	$e(\mathbb{Z},\mathbb{Z}\oplus\mathbb{Z}_2)$	0		_	_
E_6, E_7, E_8	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$
G_2	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	-	-	
F_4	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	0	0	

THE STANDARD MODEL

 Experiments only probe the gauge algebra of the SM. There are four possibilities [Tong'17...]

$$\frac{SU(3) \times SU(2) \times U(1)}{\Gamma}, \quad \Gamma \in \{1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_6\}$$

- The discrete group Γ acts trivially on the SM fermions.
- $\Gamma = Z_6$ is "maximal": Includes bundles for any other choice of Γ .
 - This is also the group that embeds in SU(5).

- The SM fermion spectrum falls into SU(5) representations.
- Any (SU(3) x SU(2) x U(1))/Z₆ bundle is a SU(5) bundle too!
- As far as anomalies are concerned, the SM is equivalent to the SU(5) GUT. But since

$$\Omega_5^{Spin}(BSU(5)) = 0$$

The SM is free of Dai-Freed anomalies

Similar situation for Spin(10).

- To get an anomaly, we need to look at more general spaces.
- What about the SM in non-orientable spaces?
 - Only makes sense if one assumes CP breaking in SM is spontaneous.
 - Need a Pin structure to define fermions, which can change cob. groups, e.g. $\Omega_6^{\text{Pin-=}}Z_{16}$, but $\Omega_6^{\text{Spin}}=0$.
 - Majorana masses require a Pin+ structure [Berg et al '00].

- To get an anomaly, we need to look at more general spaces.
- What about the SM in non-orientable spaces?
 - Only makes sense if one assumes CP breaking in SM is spontaneous.
 - Need a Pin structure to define fermions, which can change cob. groups, e.g. $\Omega_6^{\text{Pin-=}}Z_{16}$, but $\Omega_6^{\text{Spin}}=0$.
 - Majorana masses require a Pin+ structure [Berg et al '00].
- We have again

$$\Omega_5^{Pin^+}(BSU(5)) = \Omega_5^{Pin^-}(BSU(5)) = 0$$

- Last try: SM + right-handed neutrinos + gauged (B-L).
- Since all fermion charges under (B-L) are odd, we can now consider the SM on Spin^c manifolds or even Pin^c manifolds

- Last try: SM + right-handed neutrinos + gauged (B-L).
- Since all fermion charges under (B-L) are odd, we can now consider the SM on Spin^c manifolds or even Pin^c manifolds
- Still,

$$\Omega_5^{Spin^c}(BSU(5)) = \Omega_5^{Pin^c}(BSU(5)) = 0$$

so we find no anomalies in the SM.

DISCRETE CYCLIC GROUPS

- Lucky! Bordism groups & η invariants already computed by mathematicians [Bahri-Gilkey '87, Gilkey '89, Gilkey-Botvinnik '94] both for Spin and Spin^c cases. They are **nontrivial.**
- We can compare with **known anomalies** of discrete symmetries. [Ibañez-Ross' 91]. These were originally obtained by demanding that the Z_n embeds in a U(1).

$$2\sum s_i \equiv 0 \mod N, \quad \sum s_i^3 \equiv 0 \mod N$$

Only linear constraints are UV-independent [Banks-Dine' 91]

- There is a nontrivial Dai-Freed anomaly coming from evaluating the η in a generalized lens space [Bahri-Gilkey '86, Gilkey '89, Gilkey-Botvinnik '94].
- We get constraints which are cubic in the charges: A "remnant" of the cubic Ibañez-Ross constraint

$$\sum -4s_i^3 + (N^2 + 3)s_i \equiv \mod 24N$$

Are these UV-sensitive?

- There is a nontrivial Dai-Freed anomaly coming from evaluating the η in a generalized lens space [Bahri-Gilkey '86, Gilkey '89, Gilkey-Botvinnik '94].
- We get constraints which are cubic in the charges: A "remnant" of the cubic Ibañez-Ross constraint

$$\sum -4s_i^3 + (N^2 + 3)s_i \equiv \mod 24N$$

- Are these UV-sensitive? YES
 - Topological GS term that can forbid some of the bundles [lbañez '92, Garcia-Etxebarria-Hayashi-Ohmori-Tachikawa-Yonekura '17]

• For \mathbb{Z}_3 ,

$$\sum s_i \equiv 0 \mod 3 \qquad \text{(Linear IR)}$$

$$\sum s_i \equiv 0 \bmod 9 \qquad \text{(Dai-Freed)}$$

This one has phenomenological consequences: Proton triality (and also hexality) in the MSSM is a IR-anomaly free Z_3 symmetry, but it has a mod 9 anomaly

Q	u	d	l	e	H	$ar{H}$
0	-1	1	-1	-1	1	-1
0	-2	-5	-5	1	5	5

$$\sum_{MSSM} s_i = 3 \operatorname{mod} 9$$

- Dai-Freed anomaly cancellation requires 3k generations.
- Consistent with previous results [Dreiner et al. '04]: U(1) embedding of proton triality only with gen. dependent charges.

SM = TOP. SUPERCONDUCTOR

- Topological superconductor: Ist example of Dai-Freed anomaly [Kapustin-Thorgren-Turzillo-Wang '14, Witten 015, Hsieh-Cho-Ryu '16]
 - T-invariant 3d fermions. Global grav. anomaly requires multiple of 8.
 - Dai-Freed enhances to a multiple of 16, because

$$\Omega_4^{Pin^+} = \mathbb{Z}_{16}$$

of fermions/ generation in SM + rh neutrinos = 16. Not a coincidence!

- The SM + rh neutrinos has a Z₄ symmetry (center of Spin(10)) that acts on every fermion by multiplication by i.
- We can use this to put the SM on manifolds with a $Spin^{\mathbb{Z}_4}$ structure [Tachikawa-Yonekura '18]. Transition functions of the spinors in (Spin x Z₄)/Z₂
- The Smith homomorphism maps

$$\Omega_{d+1}^{Spin^{\mathbb{Z}_4}} \to \Omega_d^{Pin^+}$$



Physical interpretation: Higgsing the \mathbb{Z}_4 w. a nontrivial bundle, there is a 3d locus with massless Pin⁺ fermions.

I would like to end with a perhaps intriguing connection. The MSSM spectrum also has the same Z_4 symmetry acting on all fermions by multiplication by i.

- I would like to end with a perhaps intriguing connection. The MSSM spectrum also has the same Z_4 symmetry acting on all fermions by multiplication by i.
- # of fermionic superpartners:
 - 12 gauginos (8+3+1)
 - 4 higgsinos
- Total: | 6! Dai-Freed anomaly vanishes.

- I would like to end with a perhaps intriguing connection. The MSSM spectrum also has the same Z_4 symmetry acting on all fermions by multiplication by i.
- # of fermionic superpartners:
 - 12 gauginos (8+3+1)
 - 4 higgsinos
- Total: | 6! Dai-Freed anomaly vanishes.
- Only works because of the detailed structure of SM: Dim. of gauge group + EWSB sector.
- No obvious relation to GUT's. Related to reflections of compactification manifold? [Tachikawa-Yonekura '18]

CONCLUSIONS

- We've explored a new kind of anomaly in four dimensional gauge theories of phenomenological interest.
- SM and GUT's are anomaly free. Can put SM on non-Spin manifolds (related to topological superconductor).
- New anomalies for discrete symmetries e.g. proton triality.
- Outlook
 - We only checked a few theories!
 - Is the Z₄ in the MSSM telling us something?

DZIĘKI!