Global aspects of T-branes

Raffaele Savelli
University of Rome - Tor Vergata

String Pheno 2018,
Warsaw

Based on work with:
F. Marchesano \& S. Schwieger
arXiv:I707.03797 \& to appear...

The Higgs field

- In Type IIB at weak gs, describe D7 systems by 8d SYM.

$$
\Phi=\Phi_{1}+i \Phi_{2} \quad \text { (Higgs field) }
$$

Adjoint scalar describing D7's normal deformations.
$<\boldsymbol{\Phi}>$'s eigenvalues encode
D7's locations.

$$
<\boldsymbol{\Phi}\rangle=0 \quad \text { ||w } \quad U(2) \text { stack at } z=0
$$

- $\langle\boldsymbol{\Phi}\rangle=\left(\begin{array}{cc}x & 0 \\ 0 & -x\end{array}\right)$ |n|l| $U(\mid) x \cup(\mid), D 7_{1} \cap D 7_{2}$ at $z=x=0$
- $\langle\boldsymbol{\Phi}\rangle=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ IIII $U(I)$, D7's not moved but bound: T-brane

T-branes

- Host of peculiar brane-model-building phenomena:
- $\langle\boldsymbol{\Phi}\rangle=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$ "nilp nilpotent" matter.
- $\langle\boldsymbol{\Phi}\rangle=\left(\begin{array}{ll}0 & 1 \\ y & 0\end{array}\right)$ monodromies.
- $\langle\boldsymbol{\Phi}\rangle=\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right)$ matter localized at points.
- Common feature: Physics missed by spectral data.
- $\left[\Phi, \Phi^{\dagger}\right] \neq 0 \Rightarrow$ At most 8 supercharges preserved.

So far...

- Intriguing structure \& attractive applications:
- T-branes in F-theory \Rightarrow singularities.

[Anderson, Heckman, Katz `I3]
[Collinucci, RS `I4]
[Anderson, Heckman, Katz, Schaposnik `I7]

- Probing T-branes \Rightarrow monopole deformations.
[Heckman, Tachikawa,Vafa,Wecht `I0] [Collinucci, Giacomelli, RS,Valandro `16]
- α^{\prime} corrections to T-brane vacua.
- Realistic GUT Yukawa's from T-branes.
[Cecotti, Cordova, Heckman, Vafa; Chiou, Faraggi, Tatar,Walters; Carta, Font, Ibáñez, Marchesano, Regalado, Zoccarato `IO-`I6]
- De Sitter from T-branes.

BPS equations

- All previous studies were local
- Miss crucial info, like existence of T-brane vacua !
- Minimal Susy in 4d \Rightarrow 7-brane stack wrapping S
- $\mathrm{S} \subset \mathrm{CY}_{3}$ Compact Kähler Surface $\mathrm{w} / \mathrm{V}_{\mathrm{G}} \rightarrow \mathrm{S}$
- Stack in isolation:

$$
\mathbb{F}^{(0,2)}=\bar{\partial}_{A} \Phi=0 \quad \mathrm{~F}-\text { terms }
$$

A no-go theorem

- T-branes generically involve non-harmonic flux
- Non-zero vev's for KK-modes of gauge field.
- Take $\mathrm{V}_{\mathrm{G}}=\mathrm{L} \oplus \mathrm{L}^{-1} \quad \& \quad \Phi=\left(\begin{array}{cc}0 & m \\ p & 0\end{array}\right) \underset{\mathrm{H}^{0}\left(\mathrm{~S}, \mathrm{~L}^{-2} \otimes \mathrm{KS}\right)}{\mathrm{H}^{0}\left(\mathrm{~S}, \mathrm{~L}^{2} \otimes \mathrm{KS}\right)}$)

$$
\Rightarrow \int_{S}\left(\begin{array}{cc}
F & 0 \\
0 & -F
\end{array}\right) \wedge J=\left(\begin{array}{cc}
\sum_{p}|p|^{2}-\sum_{m}|m|^{2} & { }_{0}^{0} \\
\sum_{m}|m|^{2}-\sum_{p}|p|^{2}
\end{array}\right)
$$

- If e.g. $\int F \wedge J>0, \exists$ modes of type p \& $\operatorname{Vol}\{p=0\} \geq 0$
$-2 \int F \wedge J-\int R \wedge J \geq 0$ |n $\int R \wedge J<0$
Forbids positive and zero Ricci-curvature !

A no-go theorem

- Same conclusion when $\int F \wedge J<0$
- Valid for any gauge group so long as $\left[\Phi, \Phi^{\dagger}\right]$ is Cartan
- Valid at LargeVolume \& for $\int F \wedge J \ll \operatorname{Vol}\{S\}$
- T-brane stable where $\operatorname{Vol}\{p=0\}<\operatorname{Vol}\{S \cap S\} \quad$ [Sebastian's talk]
- String phenomenologists love to wrap 7-branes on del Pezzo's
- Must find ways to evade the no-go !

Defect fields

- Massless fields at $S \cap S^{\prime}$ 8d SYM w/ 6d defect

$$
\begin{gathered}
\mathrm{F} \& \mathrm{D} \text {-terms modified : } \\
\bar{\partial}_{A} \Phi=\mu_{\mathbb{C}}\left(\sigma, \sigma^{c}\right) \wedge \delta_{\text {SnS }} \\
2 \mathbb{F}^{(1,1)} \wedge J+\left[\Phi, \Phi^{\dagger}\right]=\left[\mu_{\mathbb{R}}(\sigma, \bar{\sigma})-\mu_{\mathbb{R}}\left(\sigma^{c}, \bar{\sigma}^{c}\right)\right] J \wedge \delta_{\text {SnS }} \\
\text { Moment maps: } \\
\mu_{\mathbb{C}} \rightarrow \text { adj-valued (I,0)-form } \\
\mu_{\mathbb{R}} \rightarrow \text { adj-valued scalar }
\end{gathered}
$$

Holomorphic scenario

- Turn on $\left\langle\sigma_{2}\right\rangle$ only, $\mathrm{U}(\mathrm{I})$ charge: $q\left(\sigma_{2}\right)=-q(p) / 2=1$
- $\mu \mathbb{C}=0$ nita still holomorphic
- $\mu_{\mathbb{R}}=-\left|\sigma_{2}\right|^{2}$ Intr Flips sign of FI term !
- Now: $\int_{S} R \wedge J \leq-2 \int_{S} F \wedge J=-2 \sum_{p}|p|^{2}+\operatorname{Vol}\left(S \cap S^{\prime}\right) \sum_{\sigma_{2}}\left|\sigma_{2}\right|^{2}>0$
- Existence of σ_{2} is harmless:
- $\operatorname{deg}(\mathrm{L})-\operatorname{deg}\left(\mathrm{L}^{\prime}\right) \geq 1-\mathrm{g}\left(\mathrm{S} \cap \mathrm{S}^{\prime}\right)$

Meromorphic scenario

- Turn on $\left.\left\langle\sigma_{1}\right\rangle \&<\sigma_{2}^{c}\right\rangle, q\left(\sigma_{1}\right)=q\left(\sigma_{2}{ }^{c}\right)=q(p) / 2=-1$
- $\mu \mathbb{C}=\sigma_{1} \sigma_{2}{ }^{\text {c }} \quad \boldsymbol{\Phi}$ is meromorphic
- $p \sim \sigma_{1} \sigma_{2}{ }^{c} / \mathrm{s}^{\prime}$ nim simple pole along $\mathrm{S} \cap \mathrm{S}^{\prime}$
- Now existence condition on p is relaxed:

$$
\text { - }-2 \int F \wedge J-\int R \wedge J+\operatorname{Vol}\left\{S \cap S^{\prime}\right\} \geq 0
$$

- $\int F \wedge J$ becomes more positive, due to $\mu_{\mathbb{R}}$:

$$
\text { - } 2 \int_{S} F \wedge J=2 \sum_{p}|p|^{2}+\operatorname{Vol}\left(S \cap S^{\prime}\right)\left(\sum_{\sigma_{1}}\left|\sigma_{1}\right|^{2}+\sum_{\sigma_{2}^{\sigma}}\left|\sigma_{2}^{c}\right|^{2}\right)
$$

Conclusions

- T-branes don't like positively curved 4-cycles.
- T-branes generally intersect other 7-branes in compact space.
- Coupling to fields at intersection avoids no-go.
- Higgs field can develop poles. How about non-simple poles?
- D-terms heavily corrected for small volumes \& large field vev's.
- Need different techniques to analyze stability.
- But hints for validity of no-go.

