## LVS flat directions and inflaton field range

Pramod Shukla

IFT, Madrid


SPLE Advanced Grant

July 04, 2018<br>String Phenomenology-2018, Warsaw<br>Based on JHEP 05 (2018) 001, [1801.05434]<br>(In collaboration with M. Cicoli, D. Ciupke, C. Mayrhofer)

## Three phases in the story



- everything looks great!
- trapped with "something" in the middle
- end! ? !


## Why LVS ??

In general, $K$ and $W$ can have several corrections induced from various sources,

$$
K=K_{0}+K_{\alpha^{\prime}}+K_{g_{s}}+\ldots ., \quad W=W_{0}+W_{n p}^{n=1}+W_{n p}^{n=2}+\ldots \ldots
$$

- Effects of string loop-corrections [Berg, Haack, Kors], [Cicoli, Conlon, Quevedo], [Berg, Haack, Pajer], [Berg, Haack, Kang, Sjörs], [Haack, Kang].
- Effects of $\alpha^{\prime}$-corrections [Becker, Becker, Haack, Louis], [Grimm, Savelli, Weissenbacher], [Bonetti, Weissenbacher], [Minasian, Pugh, Savelli].
- Higher derivatives $\left(F^{4}\right)$-corrections to scalar potential [Ciupke, Louis, Westphal].

Time evolution of the knowledge of these unknown corrections has been quite uncertain.

- And issue of viability !
- Extentions of "No scale structure" [von Gersdorff, Hebecker], [Berg,Haack, Kors], [Cicoli,Conlon, Quevedo], [Pedro, Rummel,Westphal], $\qquad$!


## Attractive features of LVS:

- The CY volume $\mathcal{V}$ is dynamically stabilized to exponetially large values, and works as a good expansion parameter, e.g. in $V_{\alpha^{\prime}}, V_{g_{s}}, V_{F^{4}}, .$.
- Controlled breaking of the (sub-)leading order symmetries $\Longrightarrow$ step-by-step computations with analytic (or at least numerical) control; good for moduli stabilization, creating some mass hierarchies, useful e.g. for single field inflation.
- Useful control over (un)known $\alpha^{\prime}$ and $g_{s}$ corrections?


## LVS flat directions and reduced Moduli space

Underlying logic and the detailed insights behind the LVS:

$$
\begin{gathered}
K=-2 \ln \left(\mathcal{V}+\frac{\hat{\xi}}{2}\right), \hat{\xi}=-\frac{\chi(X) \zeta(3)}{2(2 \pi)^{3} g_{s}^{3 / 2}}, \quad W=W_{0}+\sum_{i \in I} A_{i} e^{-a_{i} T_{i}}, \\
\mathcal{V}=\frac{1}{3!} \int_{X} J \wedge J \wedge J=\frac{1}{6} k_{i j k} t^{i} t^{j} t^{k} \quad \text { where } \quad k_{i j k}=\int_{X} \hat{D}_{i} \wedge \hat{D}_{j} \wedge \hat{D}_{k} \\
\tau_{i}=\frac{1}{2!} \int_{X} \hat{D}_{i} \wedge J \wedge J=\frac{1}{2} k_{i j k} t^{j} t^{k}, \quad T_{i}=\tau_{i}+\mathrm{i} \int_{D_{i}} C_{4} . \\
V=\sum_{i, j \in I} a_{i} a_{j} A_{i} A_{j} K^{i \bar{j}} \frac{e^{-\left(a_{i} \tau_{i}+a_{j} \tau_{j}\right)}}{\mathcal{V}^{2}}-\sum_{i \in I} 4 A_{i} W_{0} a_{i} \tau_{i} \frac{e^{-a_{i} \tau_{i}}}{\mathcal{V}^{2}}+\frac{3 \hat{\xi} W_{0}^{2}}{4 \mathcal{V}^{3}},
\end{gathered}
$$

where

$$
K^{i \bar{j}}=-\frac{4}{9}\left(\mathcal{V}+\frac{\hat{\xi}}{2}\right) k_{i j k} t^{k}+\frac{4 \mathcal{V}-\hat{\xi}}{\mathcal{V}-\hat{\xi}} \tau_{i} \tau_{j} \stackrel{\mathcal{V} \gg}{\cong} \hat{\xi}^{-}-\frac{4}{9} \mathcal{V} k_{i j k} t^{k}+4 \tau_{i} \tau_{j} .
$$

## LVS flat directions and reduced Moduli space

Requirements for LVS vacua:

1. $X$ has negative Euler number $\chi(X)<0$.
2. $X$ features at least one divisor $D_{s}$ which supports non-perturbative effects and can be made 'small', i.e. the CY volume $\mathcal{V}$ does not become zero or negative when $\tau_{s} \rightarrow 0$.
3. The element $K^{s \bar{s}}$ of the inverse Kähler metric scales as (for $\mathcal{V} \gg \tau_{s}^{3 / 2} \sim \hat{\xi}$ ):

$$
K^{s \bar{s}} \simeq \lambda \mathcal{V} \sqrt{\tau_{s}}, \quad \lambda \simeq \mathcal{O}(1)
$$

Diagonal divisor $D_{s}$ :

$$
k_{s s i} k_{s s j}=k_{s s s} k_{s i j} \quad \forall i, j,
$$

$$
\tau_{s}=\frac{1}{2} k_{s i j} t^{i} t^{j}=\frac{1}{2 k_{s s s}} k_{s s i} t^{i} k_{s s j} t^{j}=\frac{1}{2 k_{s s s}}\left(k_{s s i} t^{i}\right)^{2} \Longrightarrow \quad " d d P " .
$$

LVS vacua is generically determined by:
$\frac{3 \hat{\xi}}{2} \equiv-\frac{3}{2} \frac{\chi(X) \zeta(3)}{2(2 \pi)^{3} g_{s}^{3 / 2}} \simeq \sum_{i=1}^{n_{s}} \sqrt{\frac{2}{d_{i}}} \tau_{0, i}^{3 / 2}, \quad \mathcal{V}_{0} \simeq \sqrt{\frac{2}{d_{i}}} \frac{W_{0}}{A_{i}} \frac{\sqrt{\tau_{0, i}}}{4 a_{i}} e^{a_{i} \tau_{0, i}} \quad \forall i=1, \ldots, n_{s}$.
$\Longrightarrow$ Reduced moduli space $\mathcal{M}_{r}$ with $\operatorname{dim}\left(\mathcal{M}_{r}\right)=\left(h^{1,1}-n_{s}-1\right)$.

## A snapshot of Fiber Inflation [Cicoli, Burgess, Quevedo'08]

The CYs used for this class of models are so-called 'weak' swiss-cheese CYs which have

$$
\mathcal{V}=\gamma_{b} \tau_{b} \sqrt{\tau_{f}}-\gamma_{s} \tau_{s}^{3 / 2}, \quad W=W_{0}+A_{s} e^{-a_{s} T_{s}}
$$

The direction in the $\left(\tau_{b}-\tau_{f}\right)$-plane orthogonal to the overall volume $\mathcal{V}$ is still flat and is lifted by two-types of string-loop corrections.

- KK-type string-loop corrections: $K_{g s}^{k k}=g_{s} \sum_{i} \frac{C_{i}^{k k} t_{i}^{\perp}}{\mathcal{V}}$ : can arise via KK string exchange among non-intersecting stacks of $D 3 / D 7$-brane and $O 3 / O 7$-planes.
- Winding-type string-loop corrections: $K_{g s}^{w}=\sum_{i} \frac{C_{i}^{w}}{\mathcal{V} t_{i}^{n}}$ : can arise via winding exchange between stacks of D7/O7 intersecting along a non-contractible 1-cycle.
After extended no-scale, the leading order $\tau_{f}$ dependent terms in the scalar potential:


$$
\begin{aligned}
& V\left(\tau_{f}\right) \simeq \frac{g_{s}\left|W_{0}\right|^{2}}{\mathcal{V}^{2}}\left[\frac{A_{1}}{\tau_{f}^{2}}-\frac{A_{2}}{\mathcal{V} \sqrt{\tau_{f}}}+\frac{A_{3} \tau_{f}}{\mathcal{V}^{2}}\right] \\
& \tau_{f} \equiv e^{\frac{2}{\sqrt{3}} \phi}=\left\langle\tau_{f}\right\rangle e^{\frac{2}{\sqrt{3}} \varphi}, \quad \epsilon \simeq \frac{3}{2} \eta^{2}, r \sim 6\left(n_{s}-1\right)^{2} \\
& P_{s} \sim 2.3 \times 10^{-9}, \quad N_{e} \sim 60, n_{s} \simeq 0.96, r \simeq 0.007 \\
& \text { Many nice features for phenomenology (see Cicoli's talk). }
\end{aligned}
$$

## Strategy and minimal requirements

- Searching for some $K 3$-fibred CY threefolds with $h^{11}=3$ and having a diagonal del-Pezzo divisor (to support LVS).
- Choice of involutions, tadpole cancellations, and Brane-setting.
- Ensuring that the possible brane settings have enough structure (being parallel or intersecting) to generate "appropriate" string-loop corrections.
- Incorporating the effects of recently proposed higher derivative corrections.
- Moduli stabilization and Inflationary dynamics along with the numerics to fit the values without violating the assumptions made.
- Chiral global embedding: repeating above steps with appropriate and consistent choice of fluxes using some $K 3$-fibred CY threefolds with $h^{11} \geq 3$ and having a shrinkable del-Pezzo.
- Kähler cone conditions and size of the reduced moduli space. We investigated all the $C Y_{3}$ with $h^{1,1}=3$ by considering all the 244 polytopes of the Kreuzer-Skarke list using the CY database [Altman, Gray, He, Jejjala, Nelson].
- \# of CYs $=526$ in which there are 305 distinct geometries.
- K3-fibred along with at least one diagonal $d P$ : \# of $\mathrm{CYs}=43$. Thanks to [Oguiso' 92]'s theorem.


## Minimal global embedding: [Cicoli, Muia, PS'16]

Let us consider a CY threefold defined by a hypersurface with the following Toric data,

| $C Y$ Hyp. | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 0 | 0 | 1 | 1 | 1 | 0 | 3 |
| 8 | 0 | 1 | 1 | 1 | 0 | 1 | 4 |
| 8 | 1 | 0 | 1 | 0 | 1 | 1 | 4 |
|  | $d P_{8}$ | $\mathrm{NdP}_{10}$ | $S D 2$ | $\mathrm{NdP}_{15}$ | $\mathrm{NdP}_{13}$ | $K 3$ | $S D 1$ |

$$
\mathrm{SR}=\left\{x_{1} x_{5}, x_{1} x_{6} x_{7}, x_{2} x_{3} x_{4}, x_{2} x_{6} x_{7}, x_{3} x_{4} x_{5}\right\}
$$

with $\left(h^{2,1}, h^{1,1}\right)=(99,3)$, Euler number $\chi=-192$, and the volume form being,
$\mathcal{V}=9 t_{f} t_{b}^{2}+\frac{t_{s}^{3}}{6}=\frac{\tau_{b} \sqrt{\tau_{f}}}{6}-\frac{\sqrt{2} \tau_{s}^{3 / 2}}{3} ; \quad t_{s}=-\sqrt{2} \sqrt{\tau_{s}}, t_{f}=\frac{\tau_{b}}{6 \sqrt{\tau_{f}}}, t_{b}=\frac{\sqrt{\tau_{f}}}{3}$.
Involution, tadpole cancellations and Brane setting: Involution $\sigma: x_{3} \rightarrow-x_{3}$
$D 7$ tadpole: $\quad 8[O 7] \equiv 8\left[D_{3}\right]=8\left[D_{2}\right]+8\left[D_{5}\right], \quad$ D7 not on top of O7
$D 3$ tadpole : $\quad N_{D 3}+\frac{N_{\text {flux }}}{2}+N_{\text {gauge }}=\frac{N_{O 3}}{4}+\frac{\chi(O 7)}{12}+\sum_{a} \frac{N_{a}\left(\chi\left(D_{a}\right)+\chi\left(D_{a}^{\prime}\right)\right)}{48}$

$$
=\frac{5}{4}+\frac{35}{12}+\frac{8(16+13)}{48}=9 \quad \text { some space for background fluxes. }
$$

## Curves at the intersection of two divisors



The KK loop-corrections and $F^{4}$-corrections, are given as:

$$
\begin{aligned}
& V_{g_{s}}^{\mathrm{KK}}=g_{s}^{2}\left(\frac{g_{s}}{8 \pi}\right) \frac{W_{0}^{2}}{\mathcal{V}^{2}}\left[\frac{\left(C_{f}^{\mathrm{KK}}\right)^{2}}{4 \tau_{f}^{2}}+\frac{\left(C_{b}^{\mathrm{KK}}\right)^{2} \tau_{f}}{72 \mathcal{V}^{2}}\left(1-6 \frac{C_{s}^{\mathrm{KK}}}{C_{b}^{\mathrm{KK}}} \sqrt{\frac{2 \tau_{s}}{\tau_{f}}}+\frac{C_{f}^{\mathrm{KK}}}{C_{b}^{\mathrm{KK}}}\left(\frac{2 \tau_{s}}{\tau_{f}}\right)^{3 / 2}\right)\right], \\
& \Pi_{i}\left(D_{i}\right)=\int_{C Y} c_{2}(C Y) \wedge D_{i}, \quad \text { and } \quad V_{F^{4}}=\frac{\lambda\left|W_{0}\right|^{4} \Pi_{i} t^{i}}{\mathcal{V}^{4}} \quad \text { [Ciupke, Louis, Westphal] } \\
& V_{F^{4}}=-\left(\frac{g_{s}}{8 \pi}\right)^{2} \frac{\lambda W_{0}^{4}}{g_{s}^{3 / 2} \mathcal{V}^{3}}\left[\frac{24}{\tau_{f}}+\frac{8 \sqrt{2} \tau_{s}^{3 / 2}}{\tau_{f} \mathcal{V}}+\frac{36 \sqrt{\tau_{f}}}{\mathcal{V}}-\frac{10 \sqrt{2} \sqrt{\tau_{s}}}{\mathcal{V}}\right] . \\
& V_{\mathrm{inf}}=\frac{A W_{0}^{2}}{\left\langle\tau_{f}\right\rangle^{2} \mathcal{V}^{2}}\left(C_{\mathrm{dS}}+e^{-2 k \varphi}-4 e^{-\frac{k \varphi}{2}}+\mathcal{R}_{1} e^{k \varphi}+\mathcal{R}_{2} e^{\frac{k \varphi}{2}}\right)
\end{aligned}
$$

where $k=\frac{2}{\sqrt{3}}, C_{\mathrm{dS}}=3-\mathcal{R}_{1}-\mathcal{R}_{2}$ to obtain a Minkowski (or slightly dS ) vacuum.

## Inflationary dynamics

For $g_{s}=0.1$ and $\mathcal{V}=10^{3}, \mathcal{R}_{1}=10^{-6}$ and with reasonable choices of the underlying parameters $C_{\mathrm{W}}=90, C_{f}^{\mathrm{KK}}=65, C_{b}^{\mathrm{KK}}=0.58$ we have,

| $\mathcal{R}_{2}$ | $n_{s}$ | $r$ | $\left\|W_{0}\right\|$ | $\|\lambda\|$ | $\delta=\frac{H^{2}}{m_{\mathcal{V}}^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.964 | 0.007 | 5.7 | 0 | 0.167 |
| $7 \cdot 10^{-4}$ | 0.970 | 0.008 | 6.1 | $1.5 \cdot 10^{-3}$ | 0.169 |
| $1.5 \cdot 10^{-3}$ | 0.977 | 0.012 | 6.7 | $2.7 \cdot 10^{-3}$ | 0.171 |



- Control over $\alpha^{\prime}$ expansion: Using $\chi(C Y)=-192, \xi=-\frac{\chi(C Y) \zeta(3)}{2(2 \pi)^{3}}=0.465$ and $\zeta=\frac{\xi}{2 g_{s}^{3 / 2} \mathcal{V}}=0.0074 \ll 1$. Also $\left\langle\tau_{f}\right\rangle \simeq 60.4 \gg\left\langle\tau_{s}\right\rangle \simeq 2.9$, so that the corrections proportional to $\left\langle\tau_{s}\right\rangle / \tau_{f}$ can be self-consistently justified to be neglected.
- Shift in $\chi$ (Savelli's et al), $\chi_{\text {eff }}:=\chi(C Y)+\chi_{\text {shift }}=\chi(C Y)+2 \int_{C Y} D_{O 7}^{3}$. We find that the sign of $\chi_{\text {eff }}$ remains the same as of that of $\chi$, and also the inclusion of such effects is small; e.g. $\{\chi=-192, \xi=0.465, \zeta=0.0074\}$ changes into $\left.\chi_{\text {eff }}=-190, \xi_{\text {eff }}=0.460, \zeta_{\text {eff }}=0.0073\right\}$.


## A concrete example of the "weaker" swiss-cheese

Let us consider the following toric data for a Calabi Yau threefold which produces a volume form of kind $\mathcal{V}=\gamma_{1} \sqrt{\tau_{1} \tau_{2} \tau_{3}}-\gamma_{2} \tau_{s}^{3 / 2}$,

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 |
| 4 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 |
| 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 |
| 8 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 4 |
|  | $d P_{7}$ | $\mathrm{NdP}_{11}$ | $\mathrm{NdP}_{11}$ | $K 3$ | $\mathrm{NdP}_{11}$ | $K 3$ | $K 3$ |  |

$$
\mathrm{SR}=\left\{x_{1} x_{4}, x_{1} x_{6}, x_{1} x_{7}, x_{2} x_{7}, x_{3} x_{6}, x_{4} x_{5} x_{8}, x_{2} x_{3} x_{5} x_{8}\right\}
$$

with $\left(h^{2,1}, h^{1,1}\right)=(98,4)$ and Euler number $\chi=-188$. This corresponds to polytope ID \#1206 in the database of [Altman, Gray, He, Jejjala, Nelson].

- The Intersection Polynomial and volume form:

$$
I_{3}=2 D_{1}^{3}+2 D_{4} D_{6} D_{7} \quad \Longrightarrow \mathcal{V}=\frac{t_{1}^{3}}{3}+2 t_{4} t_{6} t_{7}=\frac{\sqrt{\tau_{4} \tau_{6} \tau_{7}}}{\sqrt{2}}-\frac{1}{3} \tau_{1}^{3 / 2}
$$

- Useful for chiral global embedding of fibre inflation by using appropriate fluxes.
- Gauge fluxes $\Longrightarrow \tau_{4} \sim \tau_{6}$, and back to the fibre inflation.
[Cicoli, Ciupke, Diaz, Guidetti, Muia, PS'17]. (see Guidetti's talk)


## Looks nice so far, BUT !!

New challenge from the Kähler cone conditions: $\frac{\Delta \phi}{M_{p}} \leq \mathcal{O}(1) \ln \mathcal{V}$


Relevance of Kähler cone and some estimates:

$$
\mathcal{V}=\frac{a}{2} t_{f} t_{b}^{2}+\frac{b}{6} t_{s}^{3}=\frac{\tau_{b} \sqrt{\tau_{f}}}{\sqrt{2 a}}-\frac{\sqrt{2} \tau_{s}^{3}}{3 \sqrt{b}} ; \quad a, b>0
$$

One type of Kaehler cone conditions which appear in concrete model can be given as:

$$
\begin{aligned}
& t_{s}<0, \quad t_{f}+t_{s}>0, \quad t_{b}+t_{s}>0 \quad \Longrightarrow \quad \frac{a \tau_{s}}{b}<\tau_{f}<\frac{\sqrt{b} \mathcal{V}}{\sqrt{2 \tau_{s}}}+\frac{\tau_{s}}{3} \\
& \Longrightarrow \frac{\sqrt{3}}{2} \ln \left(\frac{a \tau_{s}}{b}\right)<\phi<\frac{\sqrt{3}}{2} \ln \left(\frac{\sqrt{b} \mathcal{V}}{\sqrt{2 \tau_{s}}}+\frac{\tau_{s}}{3}\right)
\end{aligned}
$$

## Modified checklist

- (Chiral) Global Embedding:

1. K3-fibred CY with diagonal del-Pezzo $\sqrt{ }$
2. tadpole cancellations
3. generation of 'appropriate' string-loop corrections to drive inflation
4. moduli stabilization leading to $\mathcal{V} \simeq 10^{3}$ with $W_{0} \simeq \mathcal{O}(1)$ and controlled values of $\mathcal{C}_{g_{s}}$ needed to match the COBE normalization
5. a chiral visible sector (though not MSSM-like) is realized

Higher derivative effects are delicate, and can be useful or dangerous !

- New challenge from the Kähler cone conditions: $\frac{\Delta \phi}{M_{p}} \leq \mathcal{O}(1) \ln \mathcal{V}$

1. $\mathcal{V} \simeq 10^{3}$ with $W_{0} \simeq \mathcal{O}(1)$, which turns out to be needed to match the COBE normalization, does not result in sufficient inflaton field range, i.e. this does not lead to sufficient e-foldings to drive inflation.
2. $\mathcal{V} \geq 5 \times 10^{4}$ can result in sufficient inflaton field range to drive inflation BUT the COBE normalization conditions are not met for $\lambda \simeq 10^{-3}$.
3. If one increases $W_{0}$ to match the COBE with $\mathcal{V} \geq 5 \times 10^{4}$ then higher derivative effects are dangerous for $\lambda \simeq 10^{-3}$; For $\lambda \leq 10^{-6}$ things are okay $\sqrt{ }$.
4. If one increases $C_{g_{s}}$ (which involves a factor of $g_{s}^{2}$ ) to match the COBE with $\mathcal{V} \geq 5 \times 10^{4}$ then $V_{g_{s}} \simeq V_{L V S}$, i.e. single field approximation?
Only approximate Kähler cone is known, hope for improvements !

## Inflaton range [Cicoli, Ciupke, Mayrhofer, PS'18]

We consider the reduced moduli space of all the LVS models realized with CY orientifolds having $h^{1,1}=3$, and one superpotential contribution:

## Reduced moduli space $\left(\mathcal{M}_{r}\right)$

Leading order moduli stabilization:

$$
\mathcal{V}\left(\tau_{i}\right)=\mathcal{V}_{0}, \quad \tau_{s}=\tau_{0}
$$

Kähler cone restrictions:

$$
\int_{C_{i}} J>0, \operatorname{Vol}\left(\mathcal{M}_{r}\right)=\int_{\mathcal{M}_{r}} * \mathbf{1}_{r} .
$$



Geometry/size of the (reduced) moduli space depend on the (reduced) metric and the Kähler cone conditions (KCC): While metric can be read-off from the intersection tensor, KCC can only be approximated:
$M_{A} \supseteq M_{X} \supseteq M_{\cap} \Longleftrightarrow \mathcal{K}_{A} \subseteq \mathcal{K}_{X} \subseteq \mathcal{K}_{\cap} \Longleftrightarrow \operatorname{Vol}\left(\mathcal{M}_{A, r}\right) \leq \operatorname{Vol}\left(\mathcal{M}_{r}\right) \leq \operatorname{Vol}\left(\mathcal{M}_{\cap, r}\right)$.
Estimates for $M_{A}=M_{\cap}$ and otherwise. In most of the cases, one has the following analytic field range:

$$
\tau_{\min } \equiv a \tau_{0}<\tau<f_{1}\left(\mathcal{V}_{0}, \tau_{0}\right) \equiv \tau_{\max }
$$

where $a \geq 0$ and $f_{1}$ is a homogeneous function of degree 1 in the 4 -cycle moduli that is strictly positive for all $\mathcal{V}_{0}>0$ and $\tau_{0}>0$.

## Scanning results for LVS using CY threefolds with $h^{1,1}=3$

Classification of models with LVS flat directions:

- $n_{\mathrm{ddP}}=2, n_{\mathrm{K} 3 \mathrm{f}}=0$ leading to: $\quad \mathcal{V}=\alpha \tau_{b}^{3 / 2}-\beta_{1} \tau_{s_{1}}^{3 / 2}-\beta_{2} \tau_{s_{2}}^{3 / 2}$
- $n_{\mathrm{ddP}}=1, n_{\mathrm{K} 3 \mathrm{f}}=1$ leading to: $\quad \mathcal{V}=\alpha \sqrt{\tau_{f}} \tau_{b}-\beta \tau_{s}^{3 / 2} \quad$ (K3-fibered)
- $n_{\mathrm{ddP}}=1, n_{\mathrm{K} 3 \mathrm{f}}=0$ leading to:

$$
\begin{aligned}
& \text { (i). } \mathcal{V}=f_{3 / 2}\left(\tau_{1}, \tau_{2}\right)-\beta \tau_{s}^{3 / 2} \quad(\text { Structureless }) \\
& \text { (ii). } \quad \mathcal{V}=\alpha \tau_{b}^{3 / 2}-\beta_{1} \tau_{s}^{3 / 2}-\beta_{2}\left(\gamma_{1} \tau_{s}+\gamma_{2} \tau_{*}\right)^{3 / 2} \quad \text { (SSC-like) }
\end{aligned}
$$

Here $\alpha>0, \beta_{s}=\frac{1}{3} \sqrt{\frac{2}{d_{s}}}, \gamma_{1}>0, \gamma_{2}>0$ and $d_{s}$ degree of the del-Pezzo divisor $D_{s}$. Note that the combination $\gamma_{1} D_{s}+\gamma_{2} D_{*}$ does not correspond to a smooth divisor, and so there is no choice of basis of smooth divisors where $\mathcal{V}$ takes the standard strong Swiss cheese (SSC) form.

| $h^{1,1}$ | $n_{\mathrm{CY}}$ | $n_{\mathrm{LVS}}$ | $\%$ | $n_{\mathrm{ddP}}=1$ | $n_{\mathrm{ddP}}=2$ | $n_{\mathrm{ddP}}=3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 39 | 22 | $56.4 \%$ | 22 | - | - |
| 3 | 305 | 132 | $43.3 \%$ | 93 | 39 | - |
| 4 | 1997 | 749 | $37.5 \%$ | 464 | 261 | 24 |


| $h^{1,1}$ | $n_{\mathrm{CY}}$ | $n_{\mathrm{LVS}}$ | SSC | K3 fibred | SSC-like | Structureless |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 305 | 132 | 39 | 43 | 36 | 14 |

## Compactness of the reduced moduli space

Computation of the reduced moduli space size via restricting the moduli space metric:

$$
\mathrm{d} s^{2}=g_{i j} \mathrm{~d} \tau_{i} \mathrm{~d} \tau_{j} \quad \text { with } \quad g_{i j}=2 \frac{\partial^{2} K}{\partial T_{i} \partial \bar{T}_{j}}=\frac{1}{2} \frac{\partial^{2} K}{\partial \tau_{i} \partial \tau_{j}}, \quad \Delta \phi=\int_{\tau_{\min }}^{\tau_{\max }} \mathrm{d} s_{r} .
$$

Except for the structureless case, the CY examples in all the other three classes of LVS examples, one can analytically estimate the size of reduce modli space $\mathcal{M}_{r}$ :

- SSC:

$$
\begin{aligned}
& \mathrm{d} s_{r}^{2}=\frac{3 \beta_{2}}{4 \mathcal{V}_{0} \sqrt{\tau}}\left(\frac{1+\beta_{1} \epsilon}{1+\beta_{1} \epsilon+\beta_{2} \frac{\tau^{3 / 2}}{\mathcal{V}_{0}}}\right) \mathrm{d} \tau^{2} \quad \text { with } \quad \epsilon \equiv \frac{\tau_{0}^{3 / 2}}{\mathcal{V}_{0}} \ll 1 \\
& \Delta \phi=\frac{2}{\sqrt{3}} \sqrt{1+\beta_{1} \epsilon} \operatorname{Arcsinh}\left(f_{1}^{3 / 4} \sqrt{\frac{\beta_{2}}{\mathcal{V}_{0}\left(1+\beta_{1} \epsilon\right)}}\right)
\end{aligned}
$$

- K3-fibred:

$$
\begin{aligned}
& \mathrm{d} s_{r}^{2}=\frac{3}{4 \tau^{2}}(1+\beta \epsilon) \mathrm{d} \tau^{2}, \quad \Delta \phi=\frac{\sqrt{3}}{2} \sqrt{1+\beta \epsilon} \ln \left(\frac{f_{1}\left(\mathcal{V}_{0}, \tau_{0}\right)}{a \tau_{0}}\right) \\
& f_{1}\left(\mathcal{V}_{0}, \tau_{0}\right)=b \mathcal{V}_{0}^{2 / 3}+\mathcal{O}(\epsilon), \quad f_{1}\left(\mathcal{V}_{0}, \tau_{0}\right)=b \frac{\mathcal{V}_{0}}{\sqrt{\tau_{0}}}
\end{aligned}
$$

- SSC: similar as the first case.
- Structureless: Numerical tests show the compactness.


## Some numerical estimates for $g_{s}=0.1$

Both large field as well as small field inflation are possible

|  | $\mathcal{V}_{0}$ | SSC <br> $\left(M_{p}\right)$ | K3 fibred <br> $\left(M_{p}\right)$ | SSC-like <br> $\left(M_{p}\right)$ | structureless <br> $\left(M_{p}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\langle\operatorname{Vol}\left(\mathcal{M}_{A, r}\right)\right\rangle$ | $10^{3}$ | 0.58 | 2.27 | 0.43 | 0.57 |
|  | $10^{4}$ | 0.67 | 3.62 | 0.55 | 0.80 |
|  | $10^{5}$ | 0.76 | 4.98 | 0.62 | 0.97 |
| $\left.\operatorname{Vol}\left(\mathcal{M}_{\cap, r}\right)\right\rangle$ | $10^{3}$ | 0.71 | 2.47 | 0.70 | 0.57 |
|  | $10^{4}$ | 0.81 | 3.81 | 0.82 | 0.80 |
|  | $10^{5}$ | 0.91 | 5.17 | 0.89 | 0.97 |
|  | $10^{3}$ | 1.44 | 3.31 | 0.87 | 1.48 |
| $\max \left(\operatorname{Vol}\left(\mathcal{M}_{A, r}\right)\right)$ | $10^{4}$ | 1.91 | 5.29 | 1.38 | 2.41 |
|  | $10^{5}$ | 2.38 | 7.29 | 1.87 | 2.79 |

Conjecture : $\quad \frac{\Delta \phi}{M_{p}} \leq \mathcal{O}(1) \ln \mathcal{V}, \quad \operatorname{Vol}\left(\mathcal{M}_{r}\right) \lesssim\left[\ln \left(\frac{M_{p}}{\Lambda}\right)\right]^{\operatorname{dim}\left(\mathcal{M}_{\mathrm{r}}\right)}$

Field range for $g_{s}=0.1$ and three sets of CY volume $\mathcal{V}$


Field range for three sets of string-coupling $g_{s}$ and volume $\mathcal{V}$


## Conclusions and outlook

- Phase 1: (Chiral) Global Embedding

1. K3-fibred CY with diagonal del-Pezzo
2. tadpole cancellations $\sqrt{ }$
3. generation of 'appropriate' string-loop corrections to drive inflation $\sqrt{ }$
4. moduli stabilization leading to $\mathcal{V} \simeq 10^{3}$ with $W_{0} \simeq \mathcal{O}(1)$ and controlled values of $\mathcal{C}_{g_{s}}$ needed to match the COBE normalization

- Phase 2:

1. a chiral visible sector (though not MSSM-like) is realized
2. higher derivative effects are delicate, and can be useful or dangerous !

- Phase 3: some improvement in the Kähler cone approximations, enough ??.
- Other possible solutions:

1. To explore the curvaton possibility
2. Multi-field analysis to seek 'new' vacua besides LSV ??
3. Revisit the higher derivative effects to get a complete story ??
4. Back-reaction and stretching of the Kähler cone [Landete, Shiu '18]??

## Thanks for the attention!

