LVS flat directions and inflaton field range

Pramod Shukla

IFT, Madrid

SPLE Advanced Grant

July 04, 2018 String Phenomenology-2018, Warsaw

Based on JHEP 05 (2018) 001, [1801.05434] (In collaboration with M. Cicoli, D. Ciupke, C. Mayrhofer)

Three phases in the story

- everything looks great !
- trapped with "something" in the middle
- end ! ? !

Why LVS ??

In general, K and W can have several corrections induced from various sources,

 $K = K_0 + K_{\alpha'} + K_{g_s} + \dots, \qquad W = W_0 + W_{np}^{n=1} + W_{np}^{n=2} + \dots$

- Effects of string loop-corrections [Berg, Haack, Kors], [Cicoli, Conlon, Quevedo], [Berg, Haack, Pajer], [Berg, Haack, Kang, Sjörs], [Haack, Kang].
- Effects of α' -corrections [Becker, Becker, Haack, Louis], [Grimm, Savelli, Weissenbacher], [Bonetti, Weissenbacher], [Minasian, Pugh, Savelli].
- Higher derivatives (F^4) -corrections to scalar potential [Ciupke, Louis, Westphal].

Time evolution of the knowledge of these unknown corrections has been quite uncertain.

- And issue of viability !
- Extentions of "No scale structure" [von Gersdorff, Hebecker], [Berg, Haack, Kors], [Cicoli, Conlon, Quevedo], [Pedro, Rummel, Westphal], !

Attractive features of LVS:

- The CY volume \mathcal{V} is dynamically stabilized to exponetially large values, and works as a good expansion parameter, e.g. in $V_{\alpha'}, V_{g_s}, V_{F^4}, ...$
- Controlled breaking of the (sub-)leading order symmetries => step-by-step computations with analytic (or at least numerical) control; good for moduli stabilization, creating some mass hierarchies, useful e.g. for single field inflation.
- Useful control over (un)known α' and g_s corrections ?

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 3/20

LVS flat directions and reduced Moduli space

Underlying logic and the detailed insights behind the LVS:

$$K = -2 \ln\left(\mathcal{V} + \frac{\hat{\xi}}{2}\right), \ \hat{\xi} = -\frac{\chi(X)\zeta(3)}{2(2\pi)^3 g_s^{3/2}}, \qquad W = W_0 + \sum_{i \in I} A_i e^{-a_i T_i},$$

$$\mathcal{V} = \frac{1}{3!} \int_X J \wedge J \wedge J = \frac{1}{6} \, \mathbf{k}_{ijk} \, t^i t^j t^k \qquad \text{where} \qquad k_{ijk} = \int_X \hat{D}_i \wedge \hat{D}_j \wedge \hat{D}_k \,.$$

$$\tau_i = \frac{1}{2!} \int_X \hat{D}_i \wedge J \wedge J = \frac{1}{2} k_{ijk} t^j t^k, \quad T_i = \tau_i + i \int_{D_i} C_4.$$

$$V = \sum_{i,j \in I} a_i a_j A_i A_j \, K^{i\bar{j}} \, \frac{e^{-(a_i \tau_i + a_j \tau_j)}}{\mathcal{V}^2} - \sum_{i \in I} 4A_i W_0 \, a_i \tau_i \, \frac{e^{-a_i \tau_i}}{\mathcal{V}^2} + \frac{3\,\hat{\xi}\,W_0^2}{4\mathcal{V}^3} \,,$$

where

$$K^{i\bar{j}} = -\frac{4}{9} \left(\mathcal{V} + \frac{\hat{\xi}}{2} \right) k_{ijk} t^k + \frac{4\mathcal{V} - \hat{\xi}}{\mathcal{V} - \hat{\xi}} \tau_i \tau_j \stackrel{\mathcal{V} \gg \hat{\xi}}{\simeq} -\frac{4}{9} \mathcal{V} k_{ijk} t^k + 4 \tau_i \tau_j.$$

How to make the leading order terms in each of the three pieces compete ??

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 4/20

LVS flat directions and reduced Moduli space

Requirements for LVS vacua:

- 1. X has negative Euler number $\chi(X) < 0$.
- 2. X features at least one divisor D_s which supports non-perturbative effects and can be made 'small', i.e. the CY volume \mathcal{V} does not become zero or negative when $\tau_s \to 0$.
- 3. The element $K^{s\bar{s}}$ of the inverse Kähler metric scales as (for $\mathcal{V} \gg \tau_s^{3/2} \sim \hat{\xi}$):

$$K^{s\bar{s}} \simeq \lambda \, \mathcal{V} \, \sqrt{\tau_s} \,, \qquad \lambda \simeq \mathcal{O}(1)$$

Diagonal divisor D_s : $\mathbf{k} \to \mathbf{k} \to -\mathbf{k} \to \mathbf{k} \to \forall i \ i$

$$\kappa_{ssi} \kappa_{ssj} = \kappa_{sss} \kappa_{sij} \qquad \forall i, j,$$

$$\tau_s = \frac{1}{2} k_{sij} t^i t^j = \frac{1}{2k_{sss}} k_{ssi} t^i k_{ssj} t^j = \frac{1}{2k_{sss}} \left(k_{ssi} t^i \right)^2 \implies \quad \text{``ddP''}.$$

LVS vacua is generically determined by:

$$\frac{3\,\hat{\xi}}{2} \equiv -\frac{3}{2} \frac{\chi(X)\zeta(3)}{2(2\pi)^3 g_s^{3/2}} \simeq \sum_{i=1}^{n_s} \sqrt{\frac{2}{d_i}} \,\tau_{0,i}^{3/2}, \qquad \mathcal{V}_0 \simeq \sqrt{\frac{2}{d_i}} \,\frac{W_0}{A_i} \,\frac{\sqrt{\tau_{0,i}}}{4\,a_i} \,e^{a_i\tau_{0,i}} \quad \forall\, i=1,...,n_s\,.$$

 \implies Reduced moduli space \mathcal{M}_r with $dim(\mathcal{M}_r) = (h^{1,1} - n_s - 1).$

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 5/20

A snapshot of Fiber Inflation [Cicoli, Burgess, Quevedo'08]

The CYs used for this class of models are so-called 'weak' swiss-cheese CYs which have

$$\mathcal{V} = \gamma_b \, \tau_b \sqrt{\tau_f} - \gamma_s \, \tau_s^{3/2}, \qquad W = W_0 + A_s \, e^{-a_s \, T_s}.$$

The direction in the $(\tau_b - \tau_f)$ -plane orthogonal to the overall volume \mathcal{V} is still flat and is lifted by two-types of string-loop corrections.

- KK-type string-loop corrections: $K_{gs}^{kk} = g_s \sum_i \frac{C_i^{\kappa k} t_i^{\perp}}{\mathcal{V}}$: can arise via KK string exchange among non-intersecting stacks of D3/D7-brane and O3/O7-planes.
- Winding-type string-loop corrections: $K_{gs}^w = \sum_i \frac{C_i^w}{\mathcal{V} t_i^{\cap}}$: can arise via winding exchange between stacks of D7/O7 intersecting along a non-contractible 1-cycle.

After extended no-scale, the leading order τ_f dependent terms in the scalar potential:

Global embeddings ???

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 6/20

Strategy and minimal requirements

- Searching for some K3-fibred CY threefolds with $h^{11} = 3$ and having a diagonal del-Pezzo divisor (to support LVS).
- Choice of involutions, tadpole cancellations, and Brane-setting.
- Ensuring that the possible brane settings have enough structure (being parallel or intersecting) to generate "appropriate" string-loop corrections.
- Incorporating the effects of recently proposed higher derivative corrections.
- Moduli stabilization and Inflationary dynamics along with the numerics to fit the values without violating the assumptions made.
- Chiral global embedding: repeating above steps with appropriate and consistent choice of fluxes using some K3-fibred CY threefolds with h¹¹ ≥ 3 and having a shrinkable del-Pezzo.
- Kähler cone conditions and size of the reduced moduli space.

We investigated all the CY_3 with $h^{1,1} = 3$ by considering all the 244 polytopes of the Kreuzer-Skarke list using the CY database [Altman, Gray, He, Jejjala, Nelson].

- # of CYs = 526 in which there are 305 distinct geometries.
- K3-fibred along with at least one diagonal dP: # of CYs = 43. Thanks to [Oguiso' 92]'s theorem.

Minimal global embedding: [Cicoli, Muia, PS'16]

Let us consider a CY threefold defined by a hypersurface with the following Toric data,

CY Hyp.	x_1	x_2	x_3	x_4	x_5	x_6	x_7
6	0	0	1	1	1	0	3
8	0	1	1	1	0	1	4
8	1	0	1	0	1	1	4
	dP_8	NdP_{10}	SD2	NdP_{15}	NdP_{13}	K3	SD1

SR = { $x_1x_5, x_1x_6x_7, x_2x_3x_4, x_2x_6x_7, x_3x_4x_5$ }

with $(h^{2,1},h^{1,1})=(99,3)$, Euler number $\chi=-192$, and the volume form being,

$$\mathcal{V} = 9 t_f t_b^2 + \frac{t_s^3}{6} = \frac{\tau_b \sqrt{\tau_f}}{6} - \frac{\sqrt{2} \tau_s^{3/2}}{3}; \qquad t_s = -\sqrt{2} \sqrt{\tau_s}, \ t_f = \frac{\tau_b}{6\sqrt{\tau_f}}, \ t_b = \frac{\sqrt{\tau_f}}{3}.$$

Involution, tadpole cancellations and Brane setting: Involution $\sigma: x_3 \to -x_3$

D7 tadpole :
$$8 [O7] \equiv 8 [D_3] = 8 [D_2] + 8 [D_5],$$
 D7 not on top of O7
D3 tadpole : $N_{D3} + \frac{N_{\text{flux}}}{2} + N_{\text{gauge}} = \frac{N_{O3}}{4} + \frac{\chi(O7)}{12} + \sum_{a} \frac{N_a \left(\chi(D_a) + \chi(D'_a)\right)}{48}$
 $= \frac{5}{4} + \frac{35}{12} + \frac{8(16+13)}{48} = 9$ some space for background fluxes.

Curves at the intersection of two divisors

	D_1	D_2	D_3	D_4	D_5	D_6	D_7
D_1	\mathcal{C}_2	\mathbb{T}^2	\mathbb{T}^2	\mathcal{C}_2	Ø	Ø	\mathcal{C}_4
D_2	\mathbb{T}^2	\mathbb{P}^1	\mathbb{T}^2	$2\mathbb{P}^1$	\mathcal{C}_2	Ø	\mathcal{C}_4
D_3	\mathbb{T}^2	\mathbb{T}^2	\mathcal{C}_2	\mathbb{P}^1	\mathbb{P}^1	\mathcal{C}_2	\mathcal{C}_{14}
D_4	\mathcal{C}_2	$2\mathbb{P}^1$	\mathbb{P}^1	$6\mathbb{P}^1$	\mathbb{P}^1	\mathcal{C}_2	\mathcal{C}_5
D_5	Ø	\mathcal{C}_2	\mathbb{P}^1	\mathbb{P}^1	$4\mathbb{P}^1$	\mathcal{C}_2	\mathcal{C}_5
D_6	Ø	Ø	\mathcal{C}_2	\mathcal{C}_2	\mathcal{C}_2	Ø	\mathcal{C}_{10}
D_7	\mathcal{C}_4	\mathcal{C}_4	\mathcal{C}_{14}	\mathcal{C}_5	\mathcal{C}_5	\mathcal{C}_{10}	\mathcal{C}_{82}

 $O7 \cap D_5 = \mathbb{P}^1$, $O7 \cap D_2 = \mathbb{T}^2$, $D_2 \cap D_5 = \mathcal{C}_2$

$$V_{g_s}^{W} = -2\left(\frac{g_s}{8\pi}\right) \sum_{i} \frac{W_0^2 C_i^{W}}{\mathcal{V}^3 t_i^{\cap}}$$
$$= -2\left(\frac{g_s}{8\pi}\right) \frac{|W_0|^2}{\mathcal{V}^3} \left[\frac{C_1^{W}}{6t_b} + \frac{C_2^{W}}{(t_s + 6t_b)} + \frac{C_3^{W}}{2\left(t_f - t_b\right)}\right].$$

The KK loop-corrections and F^4 -corrections, are given as:

$$\begin{split} V_{g_s}^{\rm KK} &= g_s^2 \left(\frac{g_s}{8\pi}\right) \frac{W_0^2}{\mathcal{V}^2} \left[\frac{(C_f^{\rm KK})^2}{4\tau_f^2} + \frac{(C_b^{\rm KK})^2 \tau_f}{72\mathcal{V}^2} \left(1 - 6\frac{C_s^{\rm KK}}{C_b^{\rm KK}} \sqrt{\frac{2\tau_s}{\tau_f}} + \frac{C_f^{\rm KK}}{C_b^{\rm KK}} \left(\frac{2\tau_s}{\tau_f}\right)^{3/2} \right) \right] \\ \Pi_i(D_i) &= \int_{CY} c_2(CY) \wedge D_i, \quad \text{and} \quad V_{F4} = \frac{\lambda |W_0|^4 \Pi_i t^i}{\mathcal{V}^4} \quad [\text{Ciupke, Louis, Westphal}] \\ V_{F4} &= -\left(\frac{g_s}{8\pi}\right)^2 \frac{\lambda W_0^4}{g_s^{3/2} \mathcal{V}^3} \left[\frac{24}{\tau_f} + \frac{8\sqrt{2\tau_s^{3/2}}}{\tau_f \mathcal{V}} + \frac{36\sqrt{\tau_f}}{\mathcal{V}} - \frac{10\sqrt{2}\sqrt{\tau_s}}{\mathcal{V}} \right]. \\ V_{\text{inf}} &= \frac{AW_0^2}{\langle \tau_f \rangle^2 \mathcal{V}^2} \left(C_{\rm ds} + e^{-2k\varphi} - 4e^{-\frac{k\varphi}{2}} + \mathcal{R}_1 e^{k\varphi} + \mathcal{R}_2 e^{\frac{k\varphi}{2}} \right), \end{split}$$

where $k = \frac{2}{\sqrt{3}}$, $C_{dS} = 3 - \mathcal{R}_1 - \mathcal{R}_2$ to obtain a Minkowski (or slightly dS) vacuum.

Inflationary dynamics

For $g_s = 0.1$ and $\mathcal{V} = 10^3$, $\mathcal{R}_1 = 10^{-6}$ and with reasonable choices of the underlying parameters $C_W = 90$, $C_f^{KK} = 65$, $C_b^{KK} = 0.58$ we have,

\mathcal{R}_2	n_s	r	$ W_0 $	$ \lambda $	$\delta = \frac{H^2}{m_{\mathcal{V}}^2}$
0	0.964	0.007	5.7	0	0.167
$7\cdot 10^{-4}$	0.970	0.008	6.1	$1.5\cdot 10^{-3}$	0.169
$1.5 \cdot 10^{-3}$	0.977	0.012	6.7	$2.7 \cdot 10^{-3}$	0.171

• Control over α' expansion: Using $\chi(CY) = -192$, $\xi = -\frac{\chi(CY) \zeta(3)}{2(2\pi)^3} = 0.465$ and $\zeta = \frac{\xi}{2g_s^{3/2} \mathcal{V}} = 0.0074 \ll 1$. Also $\langle \tau_f \rangle \simeq 60.4 \gg \langle \tau_s \rangle \simeq 2.9$, so that the corrections proportional to $\langle \tau_s \rangle / \tau_f$ can be self-consistently justified to be neglected.

Shift in χ (Savelli's et al), χ_{eff} := χ(CY) + χ_{shift} = χ(CY) + 2 ∫_{CY} D³_{O7}. We find that the sign of χ_{eff} remains the same as of that of χ, and also the inclusion of such effects is small; e.g. {χ = −192, ξ = 0.465, ζ = 0.0074} changes into χ_{eff} = −190, ξ_{eff} = 0.460, ζ_{eff} = 0.0073}.

A concrete example of the "weaker" swiss-cheese

Let us consider the following toric data for a Calabi Yau threefold which produces a volume form of kind $\mathcal{V} = \gamma_1 \sqrt{\tau_1 \tau_2 \tau_3} - \gamma_2 \tau_s^{3/2}$,

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
4	0	0	0	1	1	0	0	2
4	0	0	1	0	0	1	0	2
4	0	1	0	0	0	0	1	2
8	1	0	0	1	0	1	1	4
	dP_7	NdP_{11}	NdP_{11}	K3	NdP_{11}	K3	K3	

SR = {
$$x_1x_4, x_1x_6, x_1x_7, x_2x_7, x_3x_6, x_4x_5x_8, x_2x_3x_5x_8$$
}

with $(h^{2,1}, h^{1,1}) = (98, 4)$ and Euler number $\chi = -188$. This corresponds to polytope ID #1206 in the database of [Altman, Gray, He, Jejjala, Nelson].

The Intersection Polynomial and volume form:

$$I_3 = 2D_1^3 + 2D_4 D_6 D_7 \qquad \Longrightarrow \mathcal{V} = \frac{t_1^3}{3} + 2t_4 t_6 t_7 = \frac{\sqrt{\tau_4 \tau_6 \tau_7}}{\sqrt{2}} - \frac{1}{3}\tau_1^{3/2}$$

- Useful for chiral global embedding of fibre inflation by using appropriate fluxes.
- Gauge fluxes $\implies \tau_4 \sim \tau_6$, and back to the fibre inflation.

[Cicoli, Ciupke, Diaz, Guidetti, Muia, PS'17]. (see Guidetti's talk)

Looks nice so far, BUT !!

New challenge from the Kähler cone conditions: $\frac{\Delta \phi}{M_p} \leq \mathcal{O}(1) \ln \mathcal{V}$

Relevance of Kähler cone and some estimates:

$$\mathcal{V} = \frac{a}{2} t_f t_b^2 + \frac{b}{6} t_s^3 = \frac{\tau_b \sqrt{\tau_f}}{\sqrt{2a}} - \frac{\sqrt{2} \tau_s^3}{3\sqrt{b}}; \quad a, b > 0.$$

One type of Kaehler cone conditions which appear in concrete model can be given as:

$$\begin{aligned} t_s < 0, \quad t_f + t_s > 0, \quad t_b + t_s > 0 \implies \frac{a \tau_s}{b} < \tau_f < \frac{\sqrt{b} \mathcal{V}}{\sqrt{2 \tau_s}} + \frac{\tau_s}{3} \\ \Longrightarrow \frac{\sqrt{3}}{2} \ln\left(\frac{a \tau_s}{b}\right) < \phi < \frac{\sqrt{3}}{2} \ln\left(\frac{\sqrt{b} \mathcal{V}}{\sqrt{2 \tau_s}} + \frac{\tau_s}{3}\right). \end{aligned}$$

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 12/20

Modified checklist

- (Chiral) Global Embedding:
 - 1. K3-fibred CY with diagonal del-Pezzo \checkmark
 - 2. tadpole cancellations \checkmark
 - 3. generation of 'appropriate' string-loop corrections to drive inflation \checkmark
 - 4. moduli stabilization leading to $\mathcal{V} \simeq 10^3$ with $W_0 \simeq \mathcal{O}(1)$ and controlled

values of C_{g_s} needed to match the COBE normalization \checkmark

5. a chiral visible sector (though not MSSM-like) is realized \checkmark

Higher derivative effects are delicate, and can be useful or dangerous !

- New challenge from the Kähler cone conditions: $\frac{\Delta\phi}{M_p} \leq \mathcal{O}(1) \ln \mathcal{V}$
- 1. $\mathcal{V} \simeq 10^3$ with $W_0 \simeq \mathcal{O}(1)$, which turns out to be needed to match the COBE normalization, does not result in sufficient inflaton field range, i.e. this does not lead to sufficient e-foldings to drive inflation.
- 2. $V \ge 5 \times 10^4$ can result in sufficient inflaton field range to drive inflation BUT the COBE normalization conditions are not met for $\lambda \simeq 10^{-3}$.
- 3. If one increases W_0 to match the COBE with $\mathcal{V} \geq 5 \times 10^4$ then higher derivative

effects are dangerous for $\lambda\simeq 10^{-3};$ For $\lambda\le 10^{-6}$ things are okay \checkmark .

4. If one increases C_{g_s} (which involves a factor of g_s^2) to match the COBE with $\mathcal{V} \geq 5 \times 10^4$ then $V_{g_s} \simeq V_{LVS}$, i.e. single field approximation ?

Only approximate Kähler cone is known, hope for improvements !

Inflaton range [Cicoli, Ciupke, Mayrhofer, PS'18]

We consider the reduced moduli space of all the LVS models realized with CY orientifolds having $h^{1,1} = 3$, and one superpotential contribution:

Reduced moduli space (\mathcal{M}_r) Leading order moduli stabilization: $\mathcal{V}(\tau_i) = \mathcal{V}_0, \quad \tau_s = \tau_0$ Kähler cone restrictions: $\int_{C_i} J > 0, \text{ Vol}(\mathcal{M}_r) = \int_{\mathcal{M}_r} *\mathbf{1}_r.$

Geometry/size of the (reduced) moduli space depend on the (reduced) metric and the Kähler cone conditions (KCC): While metric can be read-off from the intersection tensor, KCC can only be approximated:

$$M_A \supseteq M_X \supseteq M_{\cap} \iff \mathcal{K}_A \subseteq \mathcal{K}_X \subseteq \mathcal{K}_{\cap} \iff \operatorname{Vol}(\mathcal{M}_{A,r}) \leq \operatorname{Vol}(\mathcal{M}_r) \leq \operatorname{Vol}(\mathcal{M}_{\cap,r})$$

Estimates for $M_A = M_{\cap}$ and otherwise. In most of the cases, one has the following analytic field range:

$$au_{\min} \equiv a \, au_0 \ < \ au \ < \ f_1(\mathcal{V}_0, au_0) \equiv au_{\max} \, ,$$

where $a \ge 0$ and f_1 is a homogeneous function of degree 1 in the 4-cycle moduli that is strictly positive for all $\mathcal{V}_0 > 0$ and $\tau_0 > 0$.

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 14/20

Scanning results for LVS using CY threefolds with $h^{1,1} = 3$

Classification of models with LVS flat directions:

- $n_{\rm ddP} = 2, n_{\rm K3f} = 0$ leading to: $\mathcal{V} = \alpha \tau_b^{3/2} \beta_1 \tau_{s_1}^{3/2} \beta_2 \tau_{s_2}^{3/2}$ (SSC)
- $n_{\rm ddP} = 1, n_{\rm K3f} = 1$ leading to: $\mathcal{V} = \alpha \sqrt{\tau_f} \tau_b \beta \tau_s^{3/2}$ (K3-fibered)

•
$$n_{ddP} = 1, n_{K3f} = 0$$
 leading to:
(i). $\mathcal{V} = f_{3/2}(\tau_1, \tau_2) - \beta \tau_s^{3/2}$ (Structureless)
(ii). $\mathcal{V} = \alpha \tau_b^{3/2} - \beta_1 \tau_s^{3/2} - \beta_2 (\gamma_1 \tau_s + \gamma_2 \tau_*)^{3/2}$ (SSC-like)

Here $\alpha > 0$, $\beta_s = \frac{1}{3} \sqrt{\frac{2}{d_s}}$, $\gamma_1 > 0$, $\gamma_2 > 0$ and d_s degree of the del-Pezzo divisor D_s . Note that the combination $\gamma_1 D_s + \gamma_2 D_*$ does not correspond to a smooth divisor, and so there is no choice of basis of smooth divisors where \mathcal{V} takes the standard strong Swiss cheese (SSC) form.

$h^{1,1}$	n_{CY}	$n_{ m LVS}$	%	$n_{\rm ddP} = 1$	$n_{\rm ddP} = 2$	$n_{\rm ddP} = 3$
2	39	22	56.4%	22	_	—
3	305	132	43.3%	93	39	—
4	1997	749	37.5%	464	261	24

$h^{1,1}$	n_{CY}	$n_{ m LVS}$	SSC	K3 fibred	SSC-like	Structureless
3	305	132	39	43	36	14

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 15/20

Compactness of the reduced moduli space

Computation of the reduced moduli space size via restricting the moduli space metric:

$$\mathrm{d}s^2 = g_{ij}\,\mathrm{d}\tau_i\mathrm{d}\tau_j \quad \text{with} \quad g_{ij} = 2\,\frac{\partial^2 K}{\partial T_i\partial \bar{T}_j} = \frac{1}{2}\frac{\partial^2 K}{\partial \tau_i\partial \tau_j}\,, \quad \Delta\phi = \int_{\tau_{\min}}^{\tau_{\max}}\mathrm{d}s_r\,.$$

Except for the structureless case, the CY examples in all the other three classes of LVS examples, one can analytically estimate the size of reduce modil space M_r :

• SSC:

$$ds_r^2 = \frac{3\beta_2}{4\nu_0\sqrt{\tau}} \left(\frac{1+\beta_1 \epsilon}{1+\beta_1 \epsilon + \beta_2 \frac{\tau^{3/2}}{\nu_0}} \right) d\tau^2 \quad \text{with} \quad \epsilon \equiv \frac{\tau_0^{3/2}}{\nu_0} \ll 1 \cdot \Delta \phi = \frac{2}{\sqrt{3}} \sqrt{1+\beta_1 \epsilon} \operatorname{Arcsinh} \left(f_1^{3/4} \sqrt{\frac{\beta_2}{\nu_0 (1+\beta_1 \epsilon)}} \right) \cdot \delta \phi$$

• K3-fibred:

$$ds_{r}^{2} = \frac{3}{4\tau^{2}} (1 + \beta \epsilon) d\tau^{2}, \quad \Delta \phi = \frac{\sqrt{3}}{2} \sqrt{1 + \beta \epsilon} \ln \left(\frac{f_{1}(\mathcal{V}_{0}, \tau_{0})}{a \tau_{0}} \right)$$
$$f_{1}(\mathcal{V}_{0}, \tau_{0}) = b \mathcal{V}_{0}^{2/3} + \mathcal{O}(\epsilon), \qquad f_{1}(\mathcal{V}_{0}, \tau_{0}) = b \frac{\mathcal{V}_{0}}{\sqrt{\tau_{0}}}.$$

- SSC: similar as the first case.
- Structureless: Numerical tests show the compactness.

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 16/20

Some numerical estimates for $g_s = 0.1$

Both large field as well as small field inflation are possible

	\mathcal{V}_0	SSC	K3 fibred	SSC-like	structureless
		(M_p)	(M_p)	(M_p)	(M_p)
	10^{3}	0.58	2.27	0.43	0.57
$\langle \operatorname{Vol}\left(\mathcal{M}_{A,r}\right) \rangle$	10^{4}	0.67	3.62	0.55	0.80
	10^{5}	0.76	4.98	0.62	0.97
	10^{3}	0.71	2.47	0.70	0.57
$\langle \operatorname{Vol}\left(\mathcal{M}_{\cap,r} ight) angle$	10^{4}	0.81	3.81	0.82	0.80
	10^{5}	0.91	5.17	0.89	0.97
	10^{3}	1.44	3.31	0.87	1.48
$\max(\operatorname{Vol}\left(\mathcal{M}_{A,r} ight))$	10^{4}	1.91	5.29	1.38	2.41
	10^{5}	2.38	7.29	1.87	2.79

$$\frac{\Delta\phi}{M_p} \le \mathcal{O}(1) \ln \mathcal{V}, \qquad \operatorname{Vol}(\mathcal{M}_r) \lesssim \left[\ln \left(\frac{M_p}{\Lambda} \right) \right]^{\dim(\mathcal{M}_r)}$$

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 17/20

Field range for $g_s = 0.1$ and three sets of CY volume \mathcal{V}

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 18/20

Field range for three sets of string-coupling g_s and volume \mathcal{V}

July 04, 2018 String Phenomenology-2018, Warsaw. - p. 19/20

Conclusions and outlook

- Phase 1: (Chiral) Global Embedding
 - 1. K3-fibred CY with diagonal del-Pezzo \checkmark
 - 2. tadpole cancellations \checkmark
 - 3. generation of 'appropriate' string-loop corrections to drive inflation \checkmark
 - 4. moduli stabilization leading to $\mathcal{V} \simeq 10^3$ with $W_0 \simeq \mathcal{O}(1)$ and controlled

values of C_{g_s} needed to match the COBE normalization \checkmark

- Phase 2:
 - 1. a chiral visible sector (though not MSSM-like) is realized \checkmark
 - 2. higher derivative effects are delicate, and can be useful or dangerous !
- Phase 3: some improvement in the Kähler cone approximations, enough ??.
- Other possible solutions:
 - 1. To explore the curvaton possibility
 - 2. Multi-field analysis to seek 'new' vacua besides LSV ??
 - 3. Revisit the higher derivative effects to get a complete story ??
 - 4. Back-reaction and stretching of the Kähler cone [Landete, Shiu '18]??

Thanks for the attention !