Effects of fixed-point localized μ -terms in flux compactifications

Yoshiyuki Tatsuta (DESY)

based on arXiv:1806.10369

In collaboration with
Hiroyuki Abe (Waseda U.) ← prev. speaker
Makoto Ishida (Waseda U.)

The SM & flux compactification

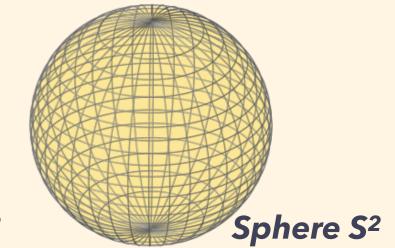
- Properties "behind" the SM:
 - Gauge theory
 - Higgs mechanism
 - Chiral matters
 - Three generations of fermions
 - Yukawa couplings

•

The SM & flux compactification

- Properties "behind" the SM:
 - Gauge theory
 - Higgs mechanism
 - Chiral matters
 - Three generations of fermions
 - Yukawa couplings

Compact manifolds with const. flux background



e.g.,

Torus T²

Usually, to lead to these properties, flux compactification plays important roles.

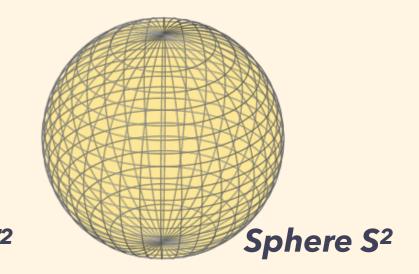
The SM & flux compactification

- Properties "behind" the SM:
 - Gauge theory
 - Higgs mechanism
 - Chiral matters
 - Three generations of fermions
 - Yukawa couplings

Compact manifolds with const. flux background

pursue EW breaking

in the MSSM

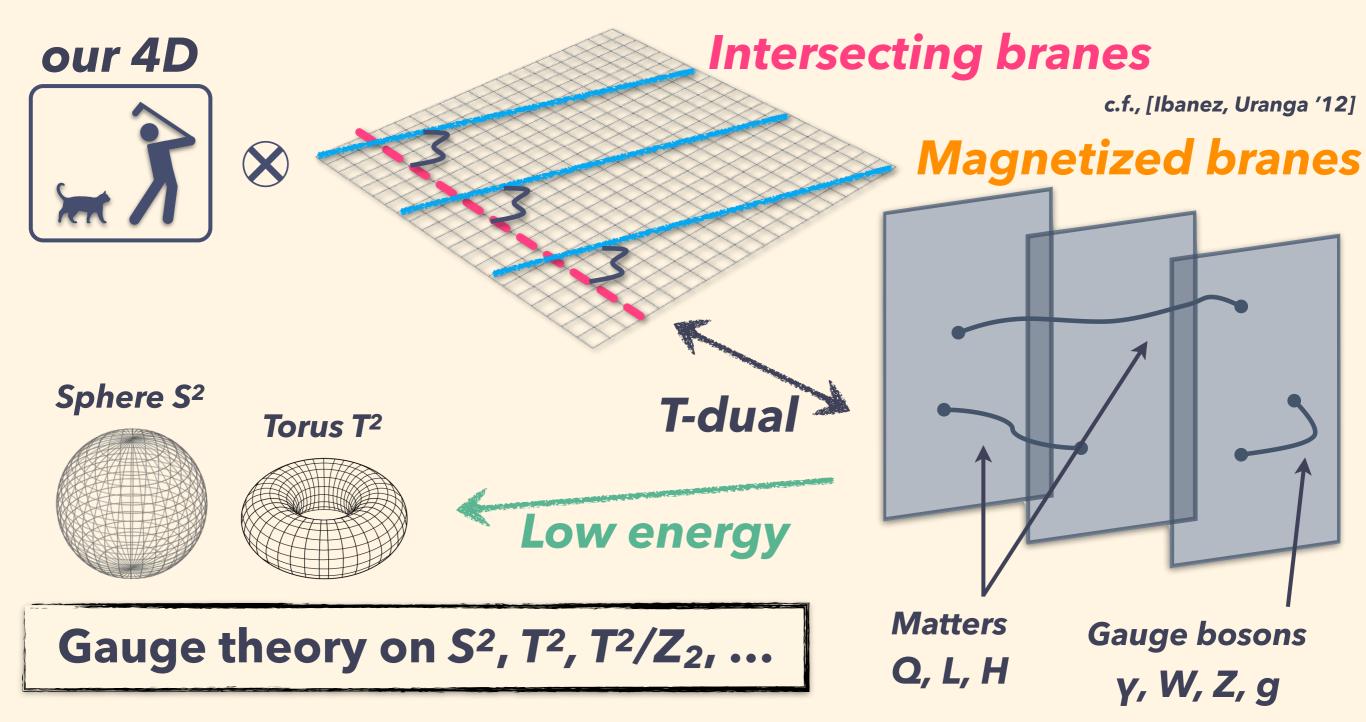


e.g., Torus T²

Usually, to lead to these properties, flux compactification plays important roles.

As effective theory of strings

 Higher dimensional gauge theory with flux bg. can appear as effective theories of superstring theory, e.g.,



Harmonic oscillation in QM

We review 6D U(1) gauge theory with flux bg.

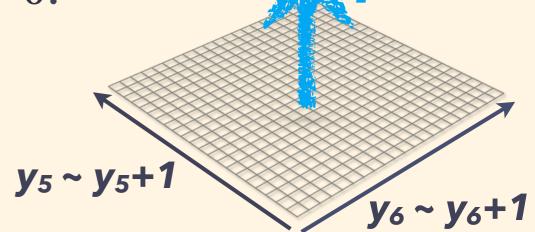
Torus T²

- Extracting 2D as torus → 2D QM
- Flux: $\langle F_{56} \rangle = 2\pi M \equiv f$ is given by extra components of

vector potential:
$$A_5 = -fy_6 \& A_6 = 0$$
.

• Analogy to harmonic oscillation:

$$H = \frac{1}{2m} \left[(P_5 + f y_6)^2 + P_6^2 \right]$$



Harmonic oscillation in QM

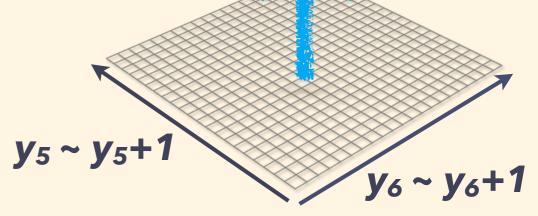
We review 6D U(1) gauge theory with flux bg.

Torus T²

- Extracting 2D as torus → 2D QM
- Flux: $\langle F_{56} \rangle = 2\pi M \equiv f$ is given by extra components of

vector potential: $A_5 = -fy_6 \& A_6 = 0$.

$$H = \frac{1}{2m} \left[(P_5 + f y_6)^2 + P_6^2 \right]$$



$$[H, P_5] = 0 \rightarrow P_5 = 2\pi j$$

$$H = \frac{1}{2m} \left[f^2 (y_6 + j/M)^2 + P_6^2 \right]$$

... simultaneously diagonalizable

for
$$j = 0, 1, ..., M-1$$

w/ shifted position by j/M

KK momenta = Landau levels.

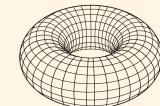
Kaluza-Klein decomposition

KK mass spectrum:

scalar
$$m_n^2 = \frac{4\pi M}{\mathscr{A}} \left(n + \frac{1}{2}\right)$$

analogous to
$$H \sim \hbar \omega_c (n + 1/2)$$

Torus T²



spinor
$$m_n^2 = \frac{4\pi M}{\mathscr{A}} n$$

(e.g., by embedding our setup into 10D SYM or so)

We assume SUSY and "1/2"-term vanishes in scalars.

KK modes (zero modes):

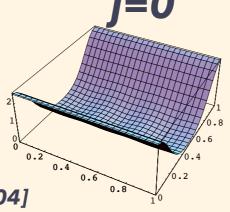
$$\psi_0^j \sim e^{2\pi i \cdot j y_5} e^{-\pi M \operatorname{Im} \tau (y_6 + j/M)^2}$$

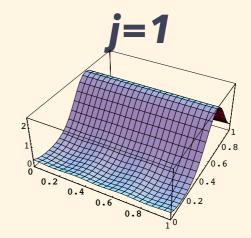
Gaussian

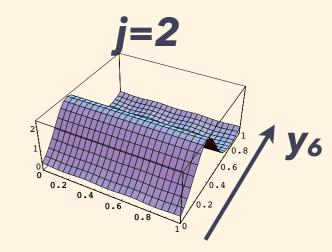
$$j = 0, 1, ..., M - 1$$

family ←

$$M = 3 \rightarrow \psi^0, \psi^1, \psi^2$$







[Cremades, Ibanez, Uranga '04]

The μ -problem in the MSSM

SUSY Higgs potential: μ-term is

$$W = \mu H_u H_d$$
mass dimension +1

• To realize radiative EW symmetry breaking at ~ 100 GeV, we need a small value of μ , e.g., ~ 10³ GeV (= 1 TeV).

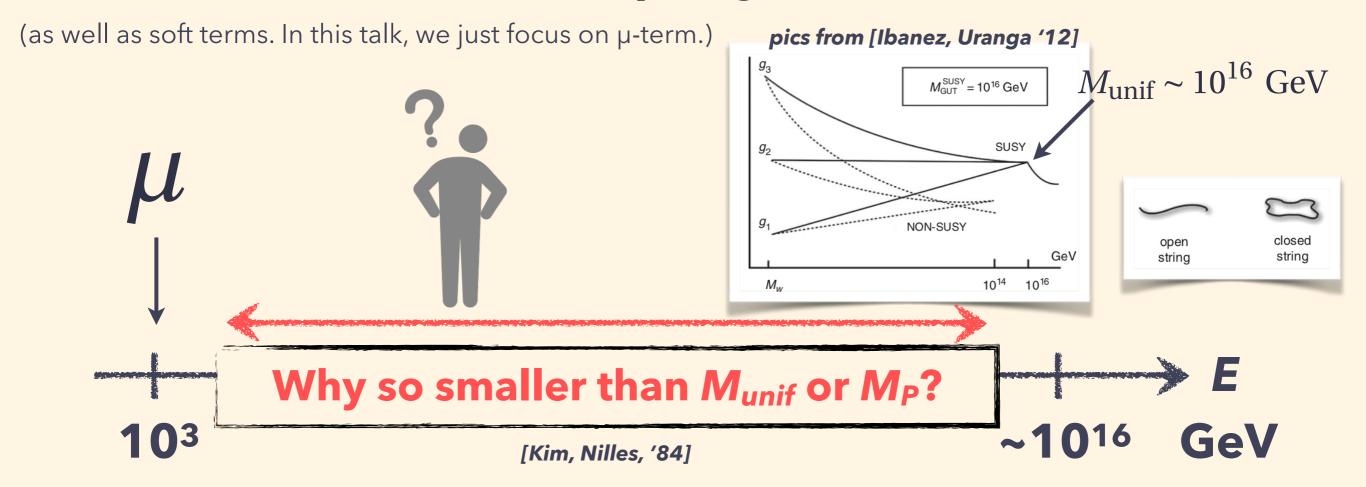
(as well as soft terms. In this talk, we just focus on μ -term.)

The μ -problem in the MSSM

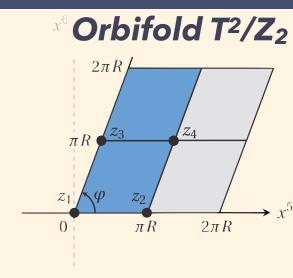
SUSY Higgs potential: μ-term is

$$W = \mu H_u H_d$$
mass dimension +1

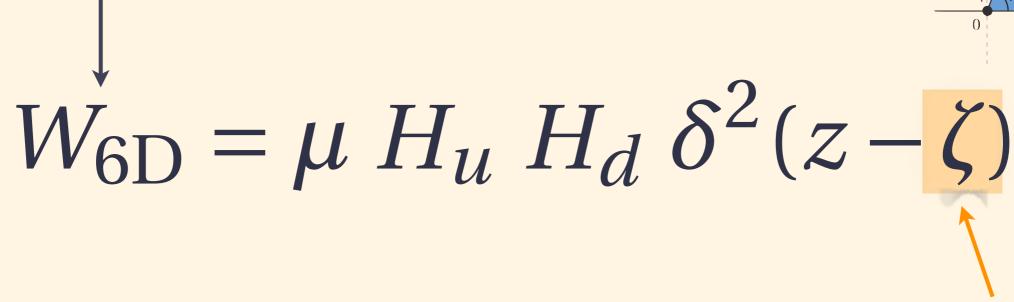
• To realize radiative EW symmetry breaking at ~ 100 GeV, we need a small value of μ , e.g., ~ 10³ GeV (= 1 TeV).



Our idea is as follows:



Our idea is as follows:

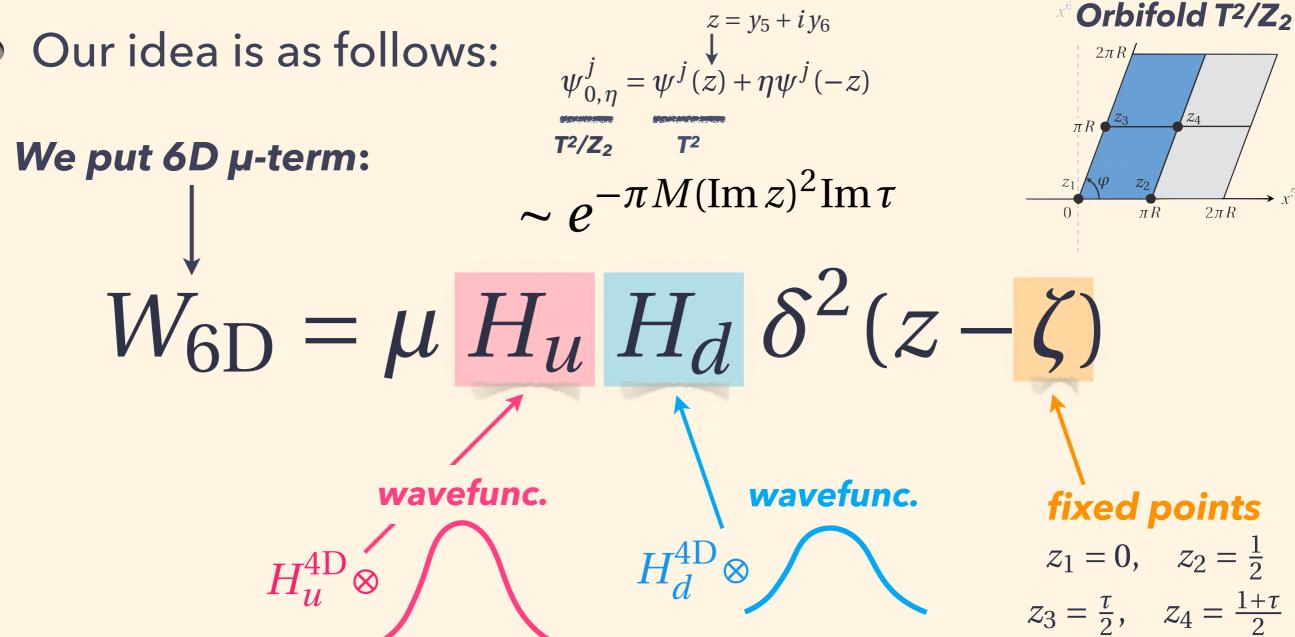


fixed points

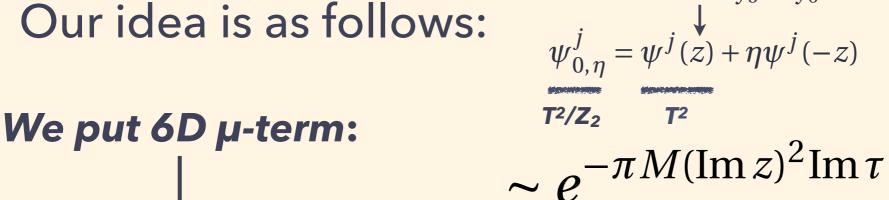
Orbifold T²/Z₂

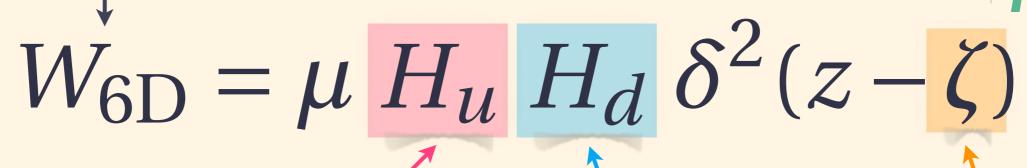
$$z_1 = 0$$
, $z_2 = \frac{1}{2}$
 $z_3 = \frac{\tau}{2}$, $z_4 = \frac{1+\tau}{2}$

Our idea is as follows:



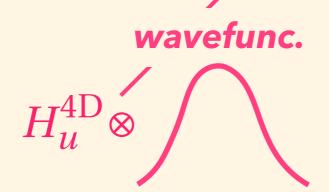
Our idea is as follows:

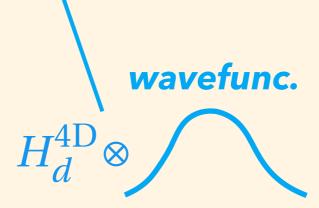




dimensional reduction:

$$\int_{T^2/Z_2} d^2z :$$





fixed points

Orbifold T²/Z₂

$$z_1 = 0, \quad z_2 = \frac{1}{2}$$
 $z_3 = \frac{\tau}{2}, \quad z_4 = \frac{1+\tau}{2}$

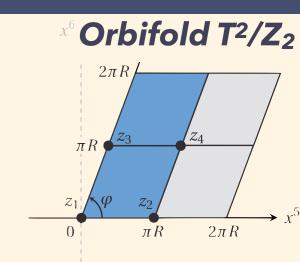
 $c \operatorname{Im} \tau H_{u}^{4D} H_{d}^{4D}$ $W_{\rm eff} \sim \mu e^{-}$

effective µ-term in 4D

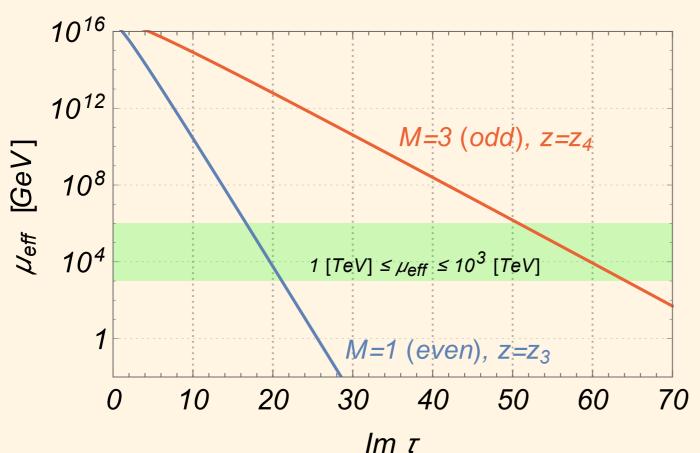
Numerical analysis

• Effective μ -parameter:

parameter: "c" depends on setups
$$\mu_{\rm eff} \sim M_C \exp(-c {
m Im}\, au) {
m GeV}$$



• D.o.f.'s: M & position of fixed points ζ



As sample, $M_C \sim 1/\sqrt{A} \sim 10^{16} \text{ GeV}$

Setup I: $M = 1, \zeta = z_3$

Setup II: M = 3, $\zeta = z_4$

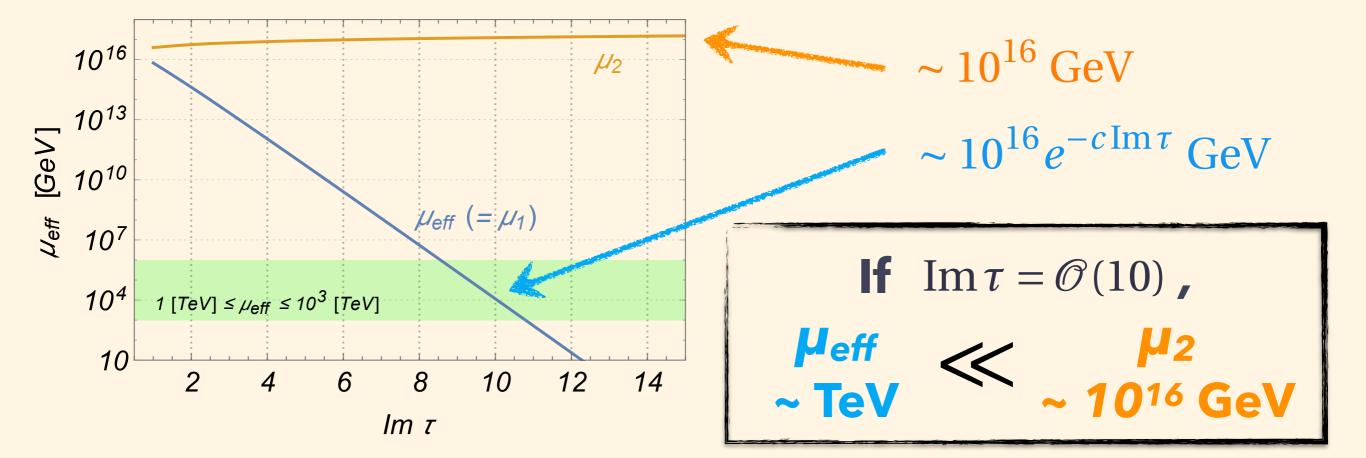
We need specific setups, but this is an interesting mechanism to lead to hierarchy.

How about multiple Higgses?

- Unfortunately, the setup tends to generate multiple Higgs doublets, if the Higgs field is charged under U(1).
- What's happen in cases with multiple Higgs pairs?
- μ_{eff} : light & μ_2 : heavy eigenvalues of 2-by-2 μ -matrix
 - ...even if we set μ -matrix ~ M_C ~10¹⁶ GeV

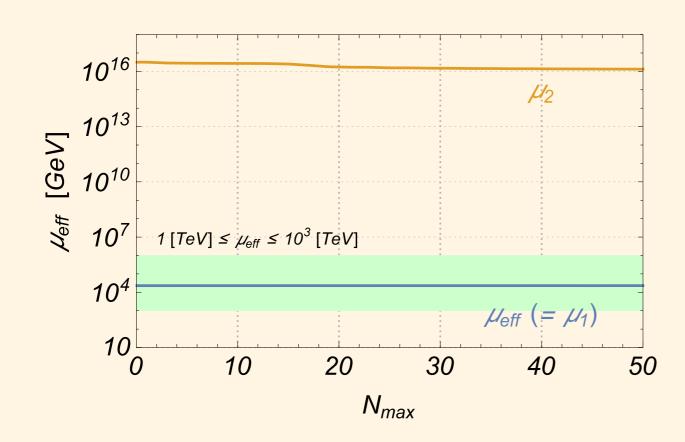
How about multiple Higgses?

- Unfortunately, the setup tends to generate multiple Higgs doublets, if the Higgs field is charged under U(1).
- What's happen in cases with multiple Higgs pairs?
- μ_{eff} : light & μ_2 : heavy eigenvalues of 2-by-2 μ -matrix
 - ...even if we set μ -matrix ~ M_C ~10¹⁶ GeV



Momentum truncation

- So far, we focus only on massless modes. But, there are many massive KK modes. Corrections from them?
 - KK tower should be truncated at some KK level $n = N_{\text{max}}$.
 - We call its scale cutoff scale $\Lambda \equiv m_{N_{\rm max}} \; (= \sqrt{4\pi M N_{\rm max}/\mathscr{A}}).$



two pairs of MSSM Higgs:

Setup: M = 2, Z_2 parity = +1

Effective μ -parameter is independent on "cutoff".

Summary

- Flux compactification plays important roles in the context of extra dim QFT & string phenomenology & cosmology.
 - Chiral matters, their families, ...
- We have investigated effects of localized μ -terms on T^2/Z_2 fixed points.
 - In single Higgs, $\operatorname{Im} \tau = \mathcal{O}(10) \to \operatorname{small} \mu\text{-term}$ around TeV
 - In multi Higgses, split mechanism: $\mu_{\text{eff}} \ll \mu_2 < ...$

Summary

- Flux compactification plays important roles in the context of extra dim QFT & string phenomenology & cosmology.
 - Chiral matters, their families, ...
- We have investigated effects of localized μ -terms on T^2/Z_2 fixed points.
 - In single Higgs, $\operatorname{Im} \tau = \mathcal{O}(10) \to \operatorname{small} \mu\text{-term}$ around TeV
 - In multi Higgses, split mechanism: $\mu_{\text{eff}} \ll \mu_2 < ...$

Flux can give an effectively small μ -term. It would be a possibility to solve so-called μ -problem.

Thank you!

Backup

Why brane-localized masses?

• We seem to be ready. Why brane-localized masses?

formal interests

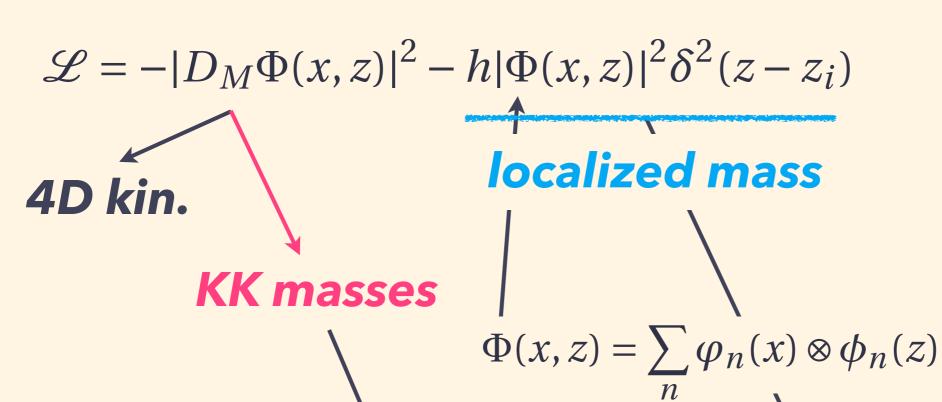
- A way to treat mass terms localized at fixed points
- Regularization of fixed points?
- Relation b/w # of modes, especially, zero-modes?

- Making unwanted modes sufficiently heavy
- Applications of mass terms to phenomenology

pheno. interests

Localized mass: 6D scalar

- Introducing a mass term localized at a fixed point z_i .
 - 6D scalar Lagrangian:



 $2\pi R$ πR πR $2\pi R$ y_5 $z_1 = 0, \quad z_2 = \frac{1}{2}$ $z_3 = \frac{\tau}{2}, \quad z_4 = \frac{1+\tau}{2}$

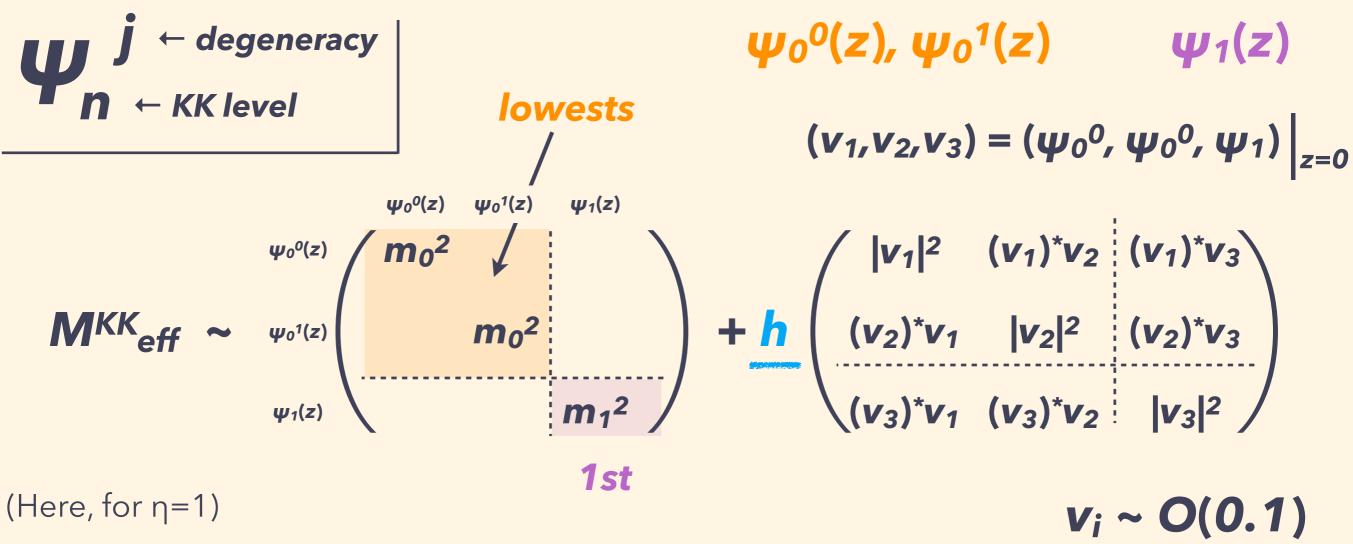
After dimensional reduction,

$$(M_{\mathrm{eff}})_{\{n,j\},\{n',j'\}} = m_n^2 \delta_{n,n'} \delta_{j,j'} + h (\phi^j(z_i))^* \phi^{j'}(z_i)$$

diagonal: KK masses off diagonal: give by h & w.f.'s

Let's look at the simplest case

Focus on 3-by-3 KK matrix = two lowest modes & a 1st KK



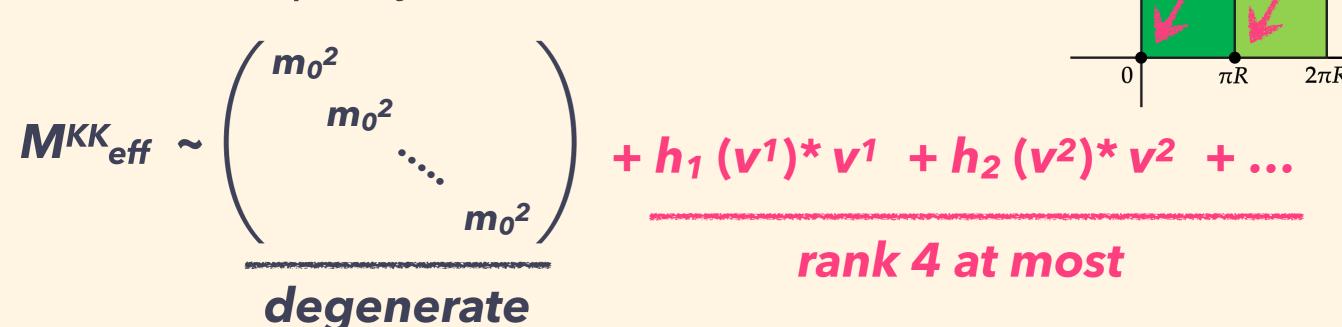
• ... gives eigen values approximately:

$$\lambda_1 = m_0^2$$
, $\lambda_2 = m_0^2$, $\lambda_3 = m_1^2$ A $n=0$ mode is uplifted.

$$\lambda'_1 = m_0^2$$
, $\lambda'_2 = m_0^2(1+O(h))$, $\lambda'_3 = m_1^2(1+O(h))$

Generic analysis w/ multi-masses

- We have four fixed points on T^2/Z_2 .
 - For simplicity, focus on lowest modes:



We can uplift four light exotics at most in eff. theory.

$$\begin{cases} m_0^2 & m_{0}^2 \\ m_0^2 & m_{0}^2 \end{cases} \begin{cases} m_0^2 & mass \\ m_0^2 & m_0^2 \end{cases} \begin{cases} m_0^2 & mass \\ m_0^2 & m_0^2 (1 + O(h_i)) \\ m_0^2 (1 + O(h_i)) & m_0^2 (1 + O(h_i)) \end{cases}$$
...

Localization of modes

Localization profiles of modes uplifted by a localized mass

Lowest modes:
light: localization dark: delocalization

 $\psi'_0{}^1(z)$: $m_0{}^2(1+O(h))$ $\psi'_1(z)$: $m_1{}^2(1+O(h))$ $\Psi'_0{}^0(z)$: $m_0{}^2$ Modes unaffected by localized mass are away from the fixed points. **4**00 0.6 0.6 0.6 0.8 0.8 0.8 04 0.4 04 0.6 0.6 0.6 0.2 0.2 0.4 0.4 0.40.1 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 1 0.2 0.3 0.4 0.5 0.2 0.2 0.2 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5