Group Theory Aspects of Non-Supersymmetric Heterotic Partition Functions

Andreas Mütter

Technical University of Munich

July 4th 2018

in collaboration with S. Groot Nibbelink, O. Loukas, Erik Parr¹ and Patrick Vaudrevange¹

Introduction

- ► SUSY breaking string models have received a lot of interest in the past decades
- ▶ In particular, there is the $SO(16) \times SO(16)$ heterotic string with $\mathcal{N} = 0$ in 10 dimensions
- Alternatively, one may break SUSY during compactification:
 e.g. Scherk-Schwarz, or particular orbifold geometries

Introduction

- SUSY breaking string models have received a lot of interest in the past decades
- ▶ In particular, there is the $SO(16) \times SO(16)$ heterotic string with $\mathcal{N} = 0$ in 10 dimensions
- Alternatively, one may break SUSY during compactification:
 e.g. Scherk-Schwarz, or particular orbifold geometries

In general, heterotic non-SUSY string vacua suffer from a bunch of problems, such as a too large cosmological constant and instabilities

Cosmological constant/dilaton tadpole

As one can see from general arguments, the non-SUSY heterotic partition function $\mathcal{Z}(\tau,\overline{\tau})$ is nonzero

$$\Lambda \sim \int \frac{\mathrm{d}^2 \tau}{\tau_2^2} \, \mathcal{Z}(\tau, \overline{\tau})$$

With the most prominent contribution coming from *off-shell tachyons*

Abel, Dienes, Mavroudi '15

Cosmological constant/dilaton tadpole

As one can see from general arguments, the non-SUSY heterotic partition function $\mathcal{Z}(\tau,\overline{\tau})$ is nonzero

$$\Lambda \sim \int \frac{\mathrm{d}^2 \tau}{\tau_2^2} \, \mathcal{Z}(\tau, \overline{\tau})$$

With the most prominent contribution coming from *off-shell tachyons*

Abel, Dienes, Mavroudi '15

There are various proposals for this to vanish

- (space-time) Supersymmetry
- (generalized) Atkin-Lehner symmetry

Moore '87, Dienes

Heterotic Orbifolds

Orbifolds can be obtained in two subsequent steps

- define and mod out a lattice $\{e_{\alpha}\}_{\alpha=1,...,D}$ to obtain a torus
- ▶ mod out a discrete isomorphism of the lattice (point group P)

For Abelian point groups

$$SO(6) \supset D_{6}(g) = \begin{pmatrix} e^{2\pi i v_{1} J_{12}} \\ e^{2\pi i v_{2} J_{34}} \\ e^{2\pi i v_{3} J_{56}} \end{pmatrix} \rightarrow v_{g} = (v_{1}, v_{2}, v_{3})$$

$$\mathcal{N} = 1 \text{ SUSY} \leftrightarrow \sum v_i = 0 \mod 2$$

Heterotic Orbifolds

Orbifolds can be obtained in two subsequent steps

- define and mod out a lattice $\{e_{\alpha}\}_{\alpha=1,...,D}$ to obtain a torus
- ► mod out a discrete isomorphism of the lattice (point group *P*) For Abelian point groups

$$\mathsf{SO}(6) \supset \mathit{D}_{\mathbf{6}}(\mathbf{g}) \ = \ \begin{pmatrix} \mathsf{e}^{2\pi \mathsf{i} \mathsf{v}_1 \mathit{J}_{12}} \\ & \mathsf{e}^{2\pi \mathsf{i} \mathsf{v}_2 \mathit{J}_{34}} \\ & & \mathsf{e}^{2\pi \mathsf{i} \mathsf{v}_3 \mathit{J}_{56}} \end{pmatrix} \ \to \ \mathsf{v}_{\mathbf{g}} = (\mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3)$$

$$\mathcal{N}=1$$
 SUSY $\leftrightarrow \sum v_i=0 \mod 2$

Heterotic Orbifolds arise by an embedding of the geometric rotations and translations into the $E_8 \times E_8$ d.o.f.

The Heterotic Partition Function

The partition function can be organized

$$\mathcal{Z} = \sum_{g,h} \mathcal{Z} \begin{bmatrix} g \\ h \end{bmatrix}$$
 where $g,h \in \text{space group}$

where we have to provide that g and h commute

The Heterotic Partition Function

The partition function can be organized

$$\mathcal{Z} = \sum_{g,h} \mathcal{Z} \begin{bmatrix} g \\ h \end{bmatrix}$$
 where $g, h \in \text{space group}$

where we have to provide that g and h commute

It is known (via generalizations of the Jacobi Abstruse Identity):

$$\mathcal{Z} \begin{bmatrix} g \\ h \end{bmatrix}$$
 vanishes \Leftrightarrow g and h have common Killing spinor

The Heterotic Partition Function

The partition function can be organized

$$\mathcal{Z} = \sum_{g,h} \mathcal{Z} \begin{bmatrix} g \\ h \end{bmatrix}$$
 where $g,h \in \text{space group}$

where we have to provide that g and h commute

It is known (via generalizations of the Jacobi Abstruse Identity):

$$\mathcal{Z} \begin{bmatrix} g \\ h \end{bmatrix}$$
 vanishes \Leftrightarrow g and h have common Killing spinor

However, the unbroken SUSY transformations need *not* be the same for all (g, h) pairs

Local "SUSY enhancement": An $\mathcal{N}=2$ Example

A $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold with roto-translation

Fischer, Ratz, Torrado, Vaudrevange '12

$$v_{\theta} = \left(0, \frac{1}{2}, -\frac{1}{2}\right), \quad v_{\omega} = \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$

with generators $\mathbf{g}_{\theta} = \left(\theta \left| \frac{1}{2} \mathbf{e}_{2} \right.\right), \quad \mathbf{g}_{\omega} = \left.\left(\omega \right| 0\right)$

Local "SUSY enhancement": An $\mathcal{N}=2$ Example

A $\mathbb{Z}_2 imes \mathbb{Z}_2$ orbifold with roto-translation Fischer, Ratz, Torrado, Vaudrevange '12

$$\mathbf{v}_{ heta} = \left(0, \frac{1}{2}, -\frac{1}{2}\right), \quad \mathbf{v}_{\omega} = \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$
 with generators $\mathbf{g}_{ heta} = \left(\theta \left| \frac{1}{2} \mathbf{e}_{2} \right|, \quad \mathbf{g}_{\omega} = \left(\omega \left| 0\right)\right)$

Because of the roto-translation, $[g_{\theta}, g_{\omega}] \neq 0$, and hence

$$\mathcal{Z} \not\supset \mathcal{Z} \begin{vmatrix} g_{\theta} \\ g_{\omega} \end{vmatrix}$$
 (the same holds for all $\mathsf{SL}(2,\mathbb{Z})$ images)

$$\mathcal{N} \geq 2$$
 SUSY in each (g, h) -twisted sector,

but

 $\mathcal{N}=1$ in the intersection!

Q: Can one achieve the same for $\mathcal{N} = 0 \rightarrow \mathcal{N} \geq 1$?

Four dimensional spinor representation

On the space-time fermions, each $D_{\bf 6}(g)\in {\bf 6}$ of ${\rm SO}(6)$ corresponds to a $D_{\bf 4}(g)\in {\bf 4}$

Because $Spin(6) \cong SU(4)$

4 needs to be in SU(4), i.e. $\det D_4(g) = 1$ for all g

Condition 1

Four dimensional spinor representation

On the space-time fermions, each $D_{\bf 6}(g)\in {\bf 6}$ of ${\rm SO}(6)$ corresponds to a $D_{\bf 4}(g)\in {\bf 4}$

Because $Spin(6) \cong SU(4)$

4 needs to be in SU(4), i.e. $\det D_4(g) = 1$ for all g

Condition 1

Caveats

- ► Elements of the geometric space group have more than one embedding into spinor space → Witten twist
- Possible degeneracies lead to spinor embeddings that are non-isomorphic to the geometric point group

For our considerations: do not care too much about whether spinor embedding corresponds to geometric embedding (just look at all possible actions on spinor space)

Realizing $\mathcal{N} = 0$

Every element of the point group commutes with the identity, therefore the untwisted partition function is given by

$$\mathcal{Z}_{\text{untw.}} = \sum_{g \in P} \mathcal{Z} \begin{bmatrix} \mathbb{1} \\ g \end{bmatrix}$$

If we insist on SUSY breaking, then the projector of the untwisted sector must have trace 0

$$\sum_{\mathbf{g} \in P} \operatorname{tr} D_{\mathbf{4}}(\mathbf{g}) = 0$$

Realizing
$$\mathcal{N} = 0$$

Every element of the point group commutes with the identity, therefore the untwisted partition function is given by

$$\mathcal{Z}_{\text{untw.}} = \sum_{g \in P} \mathcal{Z} \begin{bmatrix} \mathbb{1} \\ g \end{bmatrix}$$

If we insist on SUSY breaking, then the projector of the untwisted sector must have trace 0

$$\sum_{\mathbf{g} \in P} \operatorname{tr} D_{\mathbf{4}}(\mathbf{g}) = 0$$

or in terms of the representation content

4 does not contain a trivial singlet of P

Interplay: Modular orbits vs. projectors

Let us for the moment forget about the space group and consider the point group only

Then, all constructing elements g are just elements of a finite group, i.e. $\exists N$ s.t. $g^N = 1$

$$\mathcal{Z} \begin{bmatrix} \mathbb{1} \\ \mathsf{g} \end{bmatrix} \xrightarrow{S} \mathcal{Z} \begin{bmatrix} \mathsf{g} \\ \mathbb{1} \end{bmatrix} \xrightarrow{T} \mathcal{Z} \begin{bmatrix} \mathsf{g} \\ \mathsf{g} \end{bmatrix} \xrightarrow{T^{\mathsf{N}-1}} \mathcal{Z} \begin{bmatrix} \mathsf{g} \\ \mathbb{1} \end{bmatrix}$$

There may exist sectors that are not connected to these orbits, e.g. in Abelian $\mathbb{Z}_N \times \mathbb{Z}_M$ orbifolds.

We always assume these sectors can be removed

Conditions for $\mathcal{N} > 1$ locally

We are effictively dealing with projectors of the type

$$\sum_{n=0}^{N-1} \mathcal{Z} \begin{bmatrix} \mathbf{g} \\ \mathbf{g}^n \end{bmatrix} \xrightarrow{\text{in group theory language}} \tfrac{1}{N} \sum_{n=0}^{N-1} \operatorname{tr} D_{\mathbf{4}}(\mathbf{g}^n)$$

Conditions for $\mathcal{N} \geq 1$ locally

We are effictively dealing with projectors of the type

$$\sum_{n=0}^{N-1} \mathcal{Z} \begin{bmatrix} \mathbf{g} \\ \mathbf{g}^n \end{bmatrix} \xrightarrow{\text{in group theory language}} \tfrac{1}{N} \sum_{n=0}^{N-1} \operatorname{tr} D_{\mathbf{4}}(\mathbf{g}^n) \geq 1$$

In representation theory language, this amounts to requiring that for all \ensuremath{g}

4 branches to the trivial singlet of every $\mathbb{Z}_N^{(g)}$ subgroup

Condition 3

Conditions for $\mathcal{N} \geq 1$ locally

We are effictively dealing with projectors of the type

$$\sum_{n=0}^{N-1} \mathcal{Z} \begin{bmatrix} \mathbf{g} \\ \mathbf{g}^n \end{bmatrix} \xrightarrow{\text{in group theory language}} \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{tr} D_{\mathbf{4}}(\mathbf{g}^n) \geq 1$$

In representation theory language, this amounts to requiring that for all \boldsymbol{g}

4 branches to the trivial singlet of every $\mathbb{Z}_N^{(g)}$ subgroup

Condition 3

Then our rationale becomes

$$\mathcal{Z} \begin{bmatrix} \mathbb{1} \\ g \end{bmatrix} \text{ and entire } \Leftrightarrow \begin{array}{l} g \text{ preserves at least} \\ \text{one Killing spinor} \end{array} \Leftrightarrow \begin{array}{l} \textbf{4} \text{ branches to} \\ \text{trivial singlet } \textbf{1}_0 \\ \text{of } \mathbb{Z}_N^{(g)} \end{array}$$

A group-theoretical conjecture

Conjecture. For a given discrete group *G*, there does not exist a four dimensional representation with the properties that

- (i) it has determinant 1,
- (ii) it does not contain a trivial singlet of G,
- (iii) to every \mathbb{Z}_N subgroup of G it branches into at least one *trivial singlet of that* \mathbb{Z}_N *subgroup*.

A group-theoretical conjecture

Conjecture. For a given discrete group *G*, there does not exist a four dimensional representation with the properties that

- (i) it has determinant 1,
- (ii) it does not contain a trivial singlet of G,
- (iii) to every \mathbb{Z}_N subgroup of G it branches into at least one trivial singlet of that \mathbb{Z}_N subgroup.

We have tested this conjecture for all point groups relevant for toroidal orbifolds, and for $\mathcal{O}(100\,000)$ more discrete groups.

A group-theoretical conjecture

Conjecture. For a given discrete group *G*, there does not exist a four dimensional representation with the properties that

- (i) it has determinant 1,
- (ii) it does not contain a trivial singlet of G,
- (iii) to every \mathbb{Z}_N subgroup of G it branches into at least one trivial singlet of that \mathbb{Z}_N subgroup.

We have tested this conjecture for all point groups relevant for toroidal orbifolds, and for $\mathcal{O}(100\,000)$ more discrete groups.

It is crucial to insist on det = 1 and dimension 4!

A chance for (generalizations of) Atkin–Lehner symmetry?

Idea: if $\mathcal{Z}(\tau, \overline{\tau}) \neq 0$, it might still integrate to zero

- ▶ Guaranteed if e.g. $\mathcal{Z}(-\frac{1}{N\tau}, -\frac{1}{N\overline{\tau}}) = -\mathcal{Z}(\tau, \overline{\tau})$ known as *Atkin–Lehner symmetry* Moore '87
- ▶ does not seem to work (at least not with four non-compact dimensions) TR Taylor '87, Balog and Tuite '87

but:

- We see that a large portion of the $\mathcal{Z}\begin{bmatrix}1\\g\end{bmatrix}$ vanishes even if $\mathcal{N}=0$ globally
- Hence, not the entire partition function has to have a certain symmetry

A chance for (generalizations of) Atkin-Lehner symmetry?

Idea: if $\mathcal{Z}(\tau, \overline{\tau}) \neq 0$, it might still integrate to zero

- ▶ Guaranteed if e.g. $\mathcal{Z}(-\frac{1}{N\tau}, -\frac{1}{N\overline{\tau}}) = -\mathcal{Z}(\tau, \overline{\tau})$ known as *Atkin–Lehner symmetry* Moore '87
- ► does not seem to work (at least not with four non-compact dimensions) TR Taylor '87, Balog and Tuite '87

but:

- lacktriangle We see that a large portion of the $\mathcal{Z}egin{bmatrix} \mathbb{1} \\ g \end{bmatrix}$ vanishes even if $\mathcal{N}=0$ globally
- Hence, not the entire partition function has to have a certain symmetry

work in Problets's

Conclusions

- we have translated the vanishing condition for (g, h)-twisted sectors to a condition for the branching of the **4** to \mathbb{Z}_N subgroups
- we have formulated (and tested) a general group-theoretic conjecture for a No-Go
- the partial results point towards alternative solutions to the cosmological constant problem in (heterotic) non-SUSY strings

Conclusions

- we have translated the vanishing condition for (g, h)-twisted sectors to a condition for the branching of the **4** to \mathbb{Z}_N subgroups
- we have formulated (and tested) a general group-theoretic conjecture for a No-Go
- the partial results point towards alternative solutions to the cosmological constant problem in (heterotic) non-SUSY strings