Group Theory Aspects of Non-Supersymmetric Heterotic Partition Functions

Andreas Mütter
Technical University of Munich

July $4^{\text {th }} 2018$
in collaboration with
S. Groot Nibbelink, O. Loukas, Erik Parr ${ }^{1}$ and Patrick Vaudrevange ${ }^{1}$

Introduction

- SUSY breaking string models have received a lot of interest in the past decades
- In particular, there is the $\mathrm{SO}(16) \times \mathrm{SO}(16)$ heterotic string with $\mathcal{N}=0$ in 10 dimensions
- Alternatively, one may break SUSY during compactification: e.g. Scherk-Schwarz, or particular orbifold geometries

Introduction

- SUSY breaking string models have received a lot of interest in the past decades
- In particular, there is the $\mathrm{SO}(16) \times \mathrm{SO}(16)$ heterotic string with $\mathcal{N}=0$ in 10 dimensions
- Alternatively, one may break SUSY during compactification: e.g. Scherk-Schwarz, or particular orbifold geometries

In general, heterotic non-SUSY string vacua suffer from a bunch of problems, such as a too large cosmological constant and instabilities

Cosmological constant/dilaton tadpole

As one can see from general arguments, the non-SUSY heterotic partition function $\mathcal{Z}(\tau, \bar{\tau})$ is nonzero

$$
\Lambda \sim \int \frac{\mathrm{d}^{2} \tau}{\tau_{2}^{2}} \mathcal{Z}(\tau, \bar{\tau})
$$

With the most prominent contribution coming from off-shell tachyons

Abel, Dienes, Mavroudi '15

Cosmological constant/dilaton tadpole

As one can see from general arguments, the non-SUSY heterotic partition function $\mathcal{Z}(\tau, \bar{\tau})$ is nonzero

$$
\Lambda \sim \int \frac{\mathrm{d}^{2} \tau}{\tau_{2}^{2}} \mathcal{Z}(\tau, \bar{\tau})
$$

With the most prominent contribution coming from off-shell tachyons

Abel, Dienes, Mavroudi '15

There are various proposals for this to vanish

- (space-time) Supersymmetry
- (generalized) Atkin-Lehner symmetry

Heterotic Orbifolds

Orbifolds can be obtained in two subsequent steps

- define and mod out a lattice $\left\{e_{\alpha}\right\}_{\alpha=1, \ldots, D}$ to obtain a torus
- mod out a discrete isomorphism of the lattice (point group P)

For Abelian point groups
$\mathrm{SO}(6) \supset D_{6}(g)=\left(\begin{array}{ccc}\mathrm{e}^{2 \pi \mathrm{i} v_{1} J_{12}} & & \\ & \mathrm{e}^{2 \pi i \mathrm{v}_{2} /_{34}} & \\ & & \mathrm{e}^{2 \pi \mathrm{i} v_{3} J_{56}}\end{array}\right) \rightarrow v_{g}=\left(v_{1}, v_{2}, v_{3}\right)$
$\mathcal{N}=1 \operatorname{SUSY} \leftrightarrow \sum v_{i}=0 \bmod 2$

Heterotic Orbifolds

Orbifolds can be obtained in two subsequent steps

- define and mod out a lattice $\left\{e_{\alpha}\right\}_{\alpha=1, \ldots, D}$ to obtain a torus
- mod out a discrete isomorphism of the lattice (point group P)

For Abelian point groups
$\mathrm{SO}(6) \supset D_{6}(g)=\left(\begin{array}{ccc}\mathrm{e}^{2 \pi \mathrm{i} v_{1} J_{12}} & & \\ & \mathrm{e}^{2 \pi i \mathrm{i}_{2} /_{34}} & \\ & & \mathrm{e}^{2 \pi \mathrm{i}_{3} J_{56}}\end{array}\right) \rightarrow v_{g}=\left(v_{1}, v_{2}, v_{3}\right)$
$\mathcal{N}=1$ SUSY $\leftrightarrow \sum v_{i}=0 \bmod 2$

Heterotic Orbifolds arise by an embedding of the geometric rotations and translations into the $\mathrm{E}_{8} \times \mathrm{E}_{8}$ d.o.f.

The Heterotic Partition Function

The partition function can be organized

$$
\mathcal{Z}=\sum_{g, h} \mathcal{Z}\left[\begin{array}{l}
g \\
h
\end{array}\right] \quad \text { where } g, h \in \text { space group }
$$

where we have to provide that g and h commute

The Heterotic Partition Function

The partition function can be organized

$$
\mathcal{Z}=\sum_{g, h} \mathcal{Z}\left[\begin{array}{l}
g \\
h
\end{array}\right] \quad \text { where } g, h \in \text { space group }
$$

where we have to provide that g and h commute

It is known (via generalizations of the Jacobi Abstruse Identity):
$\mathcal{Z}\left[\begin{array}{l}g \\ h\end{array}\right]$ vanishes $\Leftrightarrow \begin{gathered}g \text { and } h \\ \text { have common Killing spinor }\end{gathered}$

The Heterotic Partition Function

The partition function can be organized

$$
\mathcal{Z}=\sum_{g, h} \mathcal{Z}\left[\begin{array}{l}
g \\
h
\end{array}\right] \quad \text { where } g, h \in \text { space group }
$$

where we have to provide that g and h commute

It is known (via generalizations of the Jacobi Abstruse Identity):

$$
\mathcal{Z}\left[\begin{array}{l}
g \\
h
\end{array}\right] \text { vanishes } \Leftrightarrow \begin{gathered}
g \text { and } h \\
\text { have common Killing spinor }
\end{gathered}
$$

However, the unbroken SUSY transformations need not be the same for all (g, h) pairs

Local "SUSY enhancement": An $\mathcal{N}=2$ Example
$\mathrm{A} \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold with roto-translation
Fischer, Ratz, Torrado, Vaudrevange ' 12

$$
\begin{aligned}
v_{\theta} & =\left(0, \frac{1}{2},-\frac{1}{2}\right), \quad v_{\omega}=\left(\frac{1}{2},-\frac{1}{2}, 0\right) \\
\text { with generators } \quad g_{\theta} & =\left(\theta \left\lvert\, \frac{1}{2} e_{2}\right.\right), \quad g_{\omega}=(\omega \mid 0)
\end{aligned}
$$

Local "SUSY enhancement": An $\mathcal{N}=2$ Example
$\mathrm{A} \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold with roto-translation

$$
v_{\theta}=\left(0, \frac{1}{2},-\frac{1}{2}\right), \quad v_{\omega}=\left(\frac{1}{2},-\frac{1}{2}, 0\right)
$$

with generators $\quad g_{\theta}=\left(\theta \left\lvert\, \frac{1}{2} e_{2}\right.\right), \quad g_{\omega}=(\omega \mid 0)$
Because of the roto-translation, $\left[g_{\theta}, g_{\omega}\right] \neq 0$, and hence

$$
\mathcal{Z} \not \supset \mathcal{Z}\left[\begin{array}{l}
g_{\theta} \\
g_{\omega}
\end{array}\right] \quad \text { (the same holds for all } \mathrm{SL}(2, \mathbb{Z}) \text { images) }
$$

$\mathcal{N} \geq 2$ SUSY in each (g, h)-twisted sector,

 but$\mathcal{N}=1$ in the intersection!

Q: Can one achieve the same for $\mathcal{N}=0 \rightarrow \mathcal{N} \geq 1$?

Four dimensional spinor representation

On the space-time fermions, each $D_{6}(g) \in 6$ of $\mathrm{SO}(6)$ corresponds to a $D_{4}(g) \in 4$

Because Spin $(6) \cong \operatorname{SU}(4)$

4 needs to be in $\operatorname{SU}(4)$, i.e. $\operatorname{det} D_{4}(g)=1$ for all g

Four dimensional spinor representation

On the space-time fermions, each $D_{6}(g) \in 6$ of $\mathrm{SO}(6)$ corresponds to a $D_{4}(g) \in 4$

Because Spin $(6) \cong \operatorname{SU}(4)$

4 needs to be in $\operatorname{SU}(4)$, i.e. $\operatorname{det} D_{4}(g)=1$ for all g

Condition 1

Caveats

- Elements of the geometric space group have more than one embedding into spinor space \rightarrow Witten twist
- Possible degeneracies lead to spinor embeddings that are non-isomorphic to the geometric point group

For our considerations: do not care too much about whether spinor embedding corresponds to geometric embedding (just look at all possible actions on spinor space)

Realizing $\mathcal{N}=0$

Every element of the point group commutes with the identity, therefore the untwisted partition function is given by

$$
\mathcal{Z}_{\text {untw. }}=\sum_{g \in P} \mathcal{Z}\left[\begin{array}{l}
\mathbb{1} \\
g
\end{array}\right]
$$

If we insist on SUSY breaking, then the projector of the untwisted sector must have trace 0

$$
\sum_{g \in P} \operatorname{tr} D_{4}(g)=0
$$

Realizing $\mathcal{N}=0$

Every element of the point group commutes with the identity, therefore the untwisted partition function is given by

$$
\mathcal{Z}_{\text {untw. }}=\sum_{g \in P} \mathcal{Z}\left[\begin{array}{l}
\mathbb{1} \\
g
\end{array}\right]
$$

If we insist on SUSY breaking, then the projector of the untwisted sector must have trace 0

$$
\sum_{g \in P} \operatorname{tr} D_{4}(g)=0
$$

or in terms of the representation content
4 does not contain a trivial singlet of P

Interplay: Modular orbits vs. projectors

Let us for the moment forget about the space group and consider the point group only
Then, all constructing elements g are just elements of a finite group, i.e. $\exists N$ s.t. $g^{N}=\mathbb{1}$

$$
\mathcal{Z}\left[\begin{array}{l}
\mathbb{1} \\
g
\end{array}\right] \xrightarrow{S} \mathcal{Z}\left[\begin{array}{l}
g \\
\mathbb{1}
\end{array}\right] \xrightarrow{T} \mathcal{Z}\left[\begin{array}{l}
g \\
g
\end{array}\right] \xrightarrow{T^{N-1}} \mathcal{Z}\left[\begin{array}{l}
g \\
\mathbb{1}
\end{array}\right]
$$

There may exist sectors that are not connected to these orbits, e.g. in Abelian $\mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifolds.

We always assume these sectors can be removed

Conditions for $\mathcal{N} \geq 1$ locally

We are effictively dealing with projectors of the type

$$
\sum_{n=0}^{N-1} \mathcal{Z}\left[\begin{array}{c}
g \\
g^{n}
\end{array}\right] \xrightarrow{\text { in group theory language }} \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{tr} D_{4}\left(g^{n}\right)
$$

Conditions for $\mathcal{N} \geq 1$ locally

We are effictively dealing with projectors of the type

$$
\sum_{n=0}^{N-1} \mathcal{Z}\left[\begin{array}{c}
g \\
g^{n}
\end{array}\right] \xrightarrow{\text { in group theory language }} \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{tr} D_{4}\left(g^{n}\right) \geq 1
$$

In representation theory language, this amounts to requiring that for all g

4 branches to the trivial singlet of every $\mathbb{Z}_{N}^{(g)}$ subgroup

Conditions for $\mathcal{N} \geq 1$ locally

We are effictively dealing with projectors of the type

$$
\sum_{n=0}^{N-1} \mathcal{Z}\left[\begin{array}{c}
g \\
g^{n}
\end{array}\right] \xrightarrow{\text { in group theory language }} \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{tr} D_{4}\left(g^{n}\right) \geq 1
$$

In representation theory language, this amounts to requiring that for all g

4 branches to the trivial singlet of every $\mathbb{Z}_{N}^{(g)}$ subgroup

Then our rationale becomes
$\mathcal{Z}\left[\begin{array}{l}\mathbb{1} \\ g\end{array}\right]$ and entire modular orbit vanishes

A group-theoretical conjecture

Conjecture. For a given discrete group G, there does not exist a four dimensional representation with the properties that
(i) it has determinant 1 ,
(ii) it does not contain a trivial singlet of G,
(iii) to every \mathbb{Z}_{N} subgroup of G it branches into at least one trivial singlet of that \mathbb{Z}_{N} subgroup.

A group-theoretical conjecture

Conjecture. For a given discrete group G, there does not exist a four dimensional representation with the properties that
(i) it has determinant 1 ,
(ii) it does not contain a trivial singlet of G,
(iii) to every \mathbb{Z}_{N} subgroup of G it branches into at least one trivial singlet of that \mathbb{Z}_{N} subgroup.

We have tested this conjecture for all point groups relevant for toroidal orbifolds, and for $\mathcal{O}(100000)$ more discrete groups.

A group-theoretical conjecture

Conjecture. For a given discrete group G, there does not exist a four dimensional representation with the properties that
(i) it has determinant 1 ,
(ii) it does not contain a trivial singlet of G,
(iii) to every \mathbb{Z}_{N} subgroup of G it branches into at least one trivial singlet of that \mathbb{Z}_{N} subgroup.

We have tested this conjecture for all point groups relevant for toroidal orbifolds, and for $\mathcal{O}(100000)$ more discrete groups.

It is crucial to insist on det $=1$ and dimension 4 !

A chance for (generalizations of) Atkin-Lehner symmetry?

Idea: if $\mathcal{Z}(\tau, \bar{\tau}) \neq 0$, it might still integrate to zero

- Guaranteed if e.g. $\mathcal{Z}\left(-\frac{1}{N \tau},-\frac{1}{N \tau}\right)=-\mathcal{Z}(\tau, \bar{\tau})$ known as Atkin-Lehner symmetry Moore '87
- does not seem to work (at least not with four non-compact dimensions) TR Taylor '87, Balog and Tuite ' 87
but:
- We see that a large portion of the $\mathcal{Z}\left[\begin{array}{l}\mathbb{1} \\ g\end{array}\right]$ vanishes even if $\mathcal{N}=0$ globally
- Hence, not the entire partition function has to have a certain symmetry

A chance for (generalizations of) Atkin-Lehner symmetry?

Idea: if $\mathcal{Z}(\tau, \bar{\tau}) \neq 0$, it might still integrate to zero

- Guaranteed if e.g. $\mathcal{Z}\left(-\frac{1}{N \tau},-\frac{1}{N \tau}\right)=-\mathcal{Z}(\tau, \bar{\tau})$ known as Atkin-Lehner symmetry Moore '87
- does not seem to work (at least not with four non-compact dimensions) TR Taylor '87, Balog and Tuite ' 87
but:
- We see that a large portion of the $\mathcal{Z}\left[\begin{array}{l}\mathbb{1} \\ g\end{array}\right]$ vanishes even if $\mathcal{N}=0$ globally
- Hence, not the entire partition function has to have a certain symmetry

Conclusions

- we have translated the vanishing condition for (g, h)-twisted sectors to a condition for the branching of the 4 to \mathbb{Z}_{N} subgroups
- we have formulated (and tested) a general group-theoretic conjecture for a No-Go
- the partial results point towards alternative solutions to the cosmological constant problem in (heterotic) non-SUSY strings

Conclusions

- we have translated the vanishing condition for (g, h)-twisted sectors to a condition for the branching of the 4 to \mathbb{Z}_{N} subgroups
- we have formulated (and tested) a general group-theoretic conjecture for a No-Go
- the partial results point towards alternative solutions to the cosmological constant problem in (heterotic) non-SUSY strings

