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Introduction

▶ SUSY breaking string models have received a lot of interest in
the past decades

▶ In particular, there is the SO(16)× SO(16) heterotic string with
N = 0 in 10 dimensions

▶ Alternatively, one may break SUSY during compactification:
e.g. Scherk–Schwarz, or particular orbifold geometries

In general, heterotic non-SUSY string vacua suffer from a bunch of
problems, such as a too large cosmological constant and
instabilities
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Cosmological constant/dilaton tadpole

As one can see from general arguments, the non-SUSY heterotic
partition function Z(τ, τ) is nonzero Dienes ’90

Λ ∼
∫

d2τ
τ22

Z(τ, τ)

With the most prominent contribution
coming from off-shell tachyons

Abel, Dienes, Mavroudi ’15

τ1

τ2

1
2− 1

2

There are various proposals for this to vanish
▶ (space-time) Supersymmetry
▶ (generalized) Atkin-Lehner symmetry Moore ’87, Dienes
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Heterotic Orbifolds

Orbifolds can be obtained in two subsequent steps
▶ define and mod out a lattice {eα}α=1,...,D to obtain a torus
▶ mod out a discrete isomorphism of the lattice (point group P)

For Abelian point groups

SO(6) ⊃ D6(g) =

e2πiv1 J12

e2πiv2 J34

e2πiv3 J56

 → vg = (v1, v2, v3)

N = 1 SUSY ↔
∑

vi = 0 mod 2

Heterotic Orbifolds arise by an embedding of the geometric
rotations and translations into the E8 × E8 d.o.f.
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The Heterotic Partition Function

The partition function can be organized

Z =
∑
g,h

Z
[

g
h

]
where g, h ∈ space group

where we have to provide that g and h commute

It is known (via generalizations of the Jacobi Abstruse Identity):

Z
[

g
h

]
vanishes ⇔ g and h

have common Killing spinor

However, the unbroken SUSY transformations need not be the
same for all (g, h) pairs
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Local “SUSY enhancement”: An N = 2 Example
A Z2 × Z2 orbifold with roto-translation Fischer, Ratz, Torrado, Vaudrevange ’12

vθ =

(
0,

1

2
,−1

2

)
, vω =

(
1

2
,−1

2
, 0

)
with generators gθ =

(
θ

∣∣∣∣ 12e2

)
, gω = (ω | 0)

Because of the roto-translation, [gθ, gω] ̸= 0, and hence

Z ̸⊃ Z
[

gθ
gω

]
(the same holds for all SL(2,Z) images)

N ≥ 2 SUSY in each (g, h)-twisted sector,
but

N = 1 in the intersection!

Q: Can one achieve the same for N = 0 → N ≥ 1?
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Four dimensional spinor representation

On the space-time fermions, each D6(g) ∈ 6 of SO(6) corresponds
to a D4(g) ∈ 4

Because Spin(6) ∼= SU(4)

4 needs to be in SU(4), i.e. det D4(g) = 1 for all g

Condition 1

Caveats

▶ Elements of the geometric space group have more than one
embedding into spinor space → Witten twist

▶ Possible degeneracies lead to spinor embeddings that are
non-isomorphic to the geometric point group

For our considerations: do not care too much about whether
spinor embedding corresponds to geometric embedding (just look
at all possible actions on spinor space)
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Realizing N = 0

Every element of the point group commutes with the identity,
therefore the untwisted partition function is given by

Zuntw. =
∑
g∈P

Z
[
1

g

]

If we insist on SUSY breaking, then the projector of the untwisted
sector must have trace 0∑

g∈P

tr D4(g) = 0

or in terms of the representation content

4 does not contain a trivial singlet of P

Condition 2
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Interplay: Modular orbits vs. projectors

Let us for the moment forget about the space group and consider
the point group only
Then, all constructing elements g are just elements of a finite
group, i.e. ∃N s.t. gN = 1

Z
[
1

g

]
S−−→ Z

[
g
1

]
T−−→ Z

[
g
g

]
TN−1

−−−−→ Z
[

g
1

]
There may exist sectors that are not connected to these orbits,
e.g. in Abelian ZN × ZM orbifolds.

We always assume these sectors can be removed



Conditions for N ≥ 1 locally
We are effictively dealing with projectors of the type

∑N−1
n=0 Z

[
g
gn

]
in group theory language−−−−−−−−−−−−−→ 1

N
∑N−1

n=0 tr D4(gn)

≥ 1

In representation theory language, this amounts to requiring that
for all g

4 branches to the trivial singlet of every Z(g)
N subgroup

Condition 3

Then our rationale becomes

Z
[
1

g

]
and entire

modular orbit vanishes
⇔ g preserves at least

one Killing spinor ⇔
4 branches to
trivial singlet 10

of Z(g)
N
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A group-theoretical conjecture

Conjecture. For a given discrete group G, there does not exist a
four dimensional representation with the properties that

(i) it has determinant 1,
(ii) it does not contain a trivial singlet of G,
(iii) to every ZN subgroup of G it branches into at least one

trivial singlet of that ZN subgroup.

We have tested this conjecture for all point groups relevant for
toroidal orbifolds, and for O(100 000) more discrete groups.

It is crucial to insist on det = 1 and dimension 4!
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A chance for (generalizations of) Atkin–Lehner symmetry?

Idea: if Z(τ, τ) ̸= 0, it might still integrate to zero
▶ Guaranteed if e.g. Z(− 1

Nτ ,−
1

Nτ ) = −Z(τ, τ) known as
Atkin–Lehner symmetry Moore ’87

▶ does not seem to work (at least not with four non-compact
dimensions) TR Taylor ’87, Balog and Tuite ’87

but:

▶ We see that a large portion of the Z
[
1

g

]
vanishes even if

N = 0 globally
▶ Hence, not the entire partition function has to have a certain

symmetry
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Conclusions

▶ we have translated the vanishing condition for (g, h)-twisted
sectors to a condition for the branching of the 4 to ZN
subgroups

▶ we have formulated (and tested) a general group-theoretic
conjecture for a No-Go

▶ the partial results point towards alternative solutions to the
cosmological constant problem in (heterotic) non-SUSY strings
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