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Introduction

Success of  Inflation +ΛCDM

• ΛCDM is in very good agreement with CMB observations

• Perturbations consistent with simple single-field inflation:

Planck Collaboration: The Planck mission
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Fig. 9. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94 % of the sky. The best-fit base⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties. From Planck Collaboration XIII (2015).

Fig. 10. Frequency-averaged T E (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical T E and EE spectra
plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model
are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the best-fit
temperature-to-polarization leakage model, fitted separately to the T E and EE spectra. From Planck Collaboration XIII (2015).

cosmological information if we assume that the anisotropies are
purely Gaussian (and hence ignore all non-Gaussian informa-
tion coming from lensing, the CIB, cross-correlations with other
probes, etc.). Carrying out this procedure for the Planck 2013
TT power spectrum data provided in Planck Collaboration XV
(2014) and Planck Collaboration XVI (2014), yields the number
826 000 (which includes the e↵ects of instrumental noise, cos-
mic variance and masking). The 2015 TT data have increased
this value to 1 114 000, with T E and EE adding a further 60 000

and 96 000 modes, respectively.4 From this perspective the 2015
Planck data constrain approximately 55 % more modes than in
the 2013 release. Of course this is not the whole story, since
some pieces of information are more valuable than others, and
in fact Planck is able to place considerably tighter constraints on
particular parameters (e.g., reionization optical depth or certain

4Here we have used the basic (and conservative) likelihood; more
modes are e↵ectively probed by Planck if one includes larger sky frac-
tions.
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・Horizon problem 
・Flatness problem 
・Origin of 
　large scale structure 

　We can solve these problems with introducing  
　accelerated expansion so-called Inflation and 
　the predictions are in good agreement with  
　CMB Observations

＊Inflation
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Planck collaboration (’15)
・Horizon problem 
・Flatness problem 
・Origin of 
　large scale structure 

　We can solve these problems with introducing  
　accelerated expansion so-called Inflation and 
　the predictions are in good agreement with  
　CMB Observations

・ Supergravity or Superstring theory 
    may provide many scalar fields 
→ Multi-field models 

・ In multi-field models, curvature perturbation 
　 is NOT conserved on super-horizon scale. 
→Any feature which single-field models don’t have?

＊Inflation

＊Motivation of Multi-field



Set up : A simple extension of Starobinsky model
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Motivation : 
・Check the multi-field  effects on  
　asymptotic potential 
・Essentially same with a class of models 
　based on Supergravity Ellis et al (’13-16)



Background trajectories

In light of the preceding discussion, we see that the shape of trajectories in field space
will be independent of m�. As such, the only remaining parameters are R

mass

, �⇤ and
�⇤. Broadly speaking, we are interested in the three regimes R

mass

> 1, R
mass

⇠ 1 and
R

mass

< 1, and in Fig. ?? we plot example trajectories for the representative values R
mass

=
5, 1, 1/5. In each case we consider the three sets of initial conditions (�⇤/Mpl,�⇤/Mpl) =
(6, 3), (�⇤/Mpl,�⇤/Mpl) = (5, 3) and (�⇤/Mpl,�⇤/Mpl) = (6, 1.5), and each trajectory is
evolved until inflation ends. When interpreting the trajectories, one has to be careful to
recall that it is not only the potential shape that is important, as the e↵ect of the non-flat
field space must also be taken into account. In this model, for example, we have G�� = e2↵�.
Given that the slow-roll equation of motion for � takes the form 3H�̇ ' �G��V,�, we can
expect that for super-Planckian values of � the velocity is enhanced compared to what we
would naively expect from the gradient of the potential alone. Nevertheless, the trajectories
in Fig. ?? qualitatively agree with our naive expectation.

(a) (b)

(c)

Figure 1: Examples trajectories for three di↵erent values of R
mass

. We show the cases a)
R

mass

= 5.0, b) R
mass

= 1.0, and c) R
mass

= 0.2. For each value of R
mass

three trajectories
are plotted, with the initial conditions given as (�⇤/Mpl,�⇤/Mpl) = (6.0, 3.0) (magenta line),
(�⇤/Mpl,�⇤/Mpl) = (5.0, 3.0) (orange line) and (�⇤/Mpl,�⇤/Mpl) = (6.0, 1.5) (blue line).
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Curvature perturbation

h⇣k1⇣k2i = (2⇡)3�(k1 + k2)Ps(k1)

h⇣k1⇣k2⇣k3i = (2⇡)3�(k1 + k2 + k3)Bs(k1, k2, k3)
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＊Spectrums
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Consistency relation:
in the squeezed limit

Lyth, Malik and Sasaki (’04)
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isocurvature mode can transfer to 
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　multi-field effects on each quantities. 

＊ fNL  can be enhanced by multi-field 
　effects？ 
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＊Multi-field effects

＊Spectrums

Maldacena (’02)
fNL ⇠ (1� ns) ⇠ O(10�2)

Consistency relation:
in the squeezed limit

Lyth, Malik and Sasaki (’04)
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Superhorizon evolution of perturbations

(�⇤/Mpl,�⇤/Mpl) = (2.0, 10.0) . We also show the region where ✏V > 1. Similar to the case
R

mass

= 0.2 considered in Fig. ??, the trajectory first evolves in the � direction and the
potential profile essentially coincides with R2 inflation. Intermediately, when � drops below
Mpl, one thus finds that ✏V becomes greater than unity and inflation temporarily ceases.
However, once the trajectory reaches the local minimum, ✏V once again becomes less than
unity and inflation recommences, with the subsequent trajectory evolving essentially in the
� direction. It is thus important when considering small values of R

mass

that we do not ter-
minate our integration of the trajectory prematurely, in order not to miss the second stage of
inflation. Note that there is a period during which the � field oscillates about its minimum,
and during this period one might expect the � field to decay into any matter fields to which
it is coupled, including the � field. Indeed, due to the non-minimal coupling of � to the Ricci
scalar in the Jordan frame, we expect there to at least be gravitationally induced couplings
between � and any other matter fields present, see e.g. [? ? ]. However, in the following we
neglect the possible decay of the � field, postponing a careful consideration of this e↵ect to
future work.

Evolution of perturbations

Having given some example background trajectories, we now consider the evolution of ⇣,
or more precisely its correlation functions. As discussed above, in single field inflation we
know that ⇣ is conserved on superhorizon scales, while in multi-field inflation it is sourced by
isocurvature perturbations if the trajectory in field space deviates from a geodesic, see e.g. [?
? ].

Figure 3: An example trajectory with R
mass

= 0.1 and initial conditions (�⇤/Mpl,�⇤/Mpl) =
(5.0, 8.0). Inflation lasts for a total of 58 e-foldings.

Perhaps the most interesting evolution of ⇣ and its correlation functions is observed
in the case of small R

mass

. As an example, we consider the parameters R
mass

= 0.1 and
(�⇤/Mpl,�⇤/Mpl) = (5, 8). The background trajectory for this choice of parameters is shown
in Fig. ??. Given that R

mass

⌧ 1, we see that the trajectory first evolves in the � direction,

– 16 –

before moving along the local minimum that runs almost parallel to the � axis. In total there
are approximately 60 e-foldings of inflation, with the turn occurring at N ⇠ 45. In the left
panel of Fig. ?? we plot the evolution of the power spectrum, normalised by the final value.
As expected, it remains constant for the first 40 e-folds, and is then sourced by isocurvature
modes as the trajectory turns at around N ⇠ 45. Given the relatively large mass hierarchy,
P⇣ is seen to oscillate as the trajectory oscillates about the local minimum, before again
approaching a constant as an essentially single-field limit is reached.

In the right panel of Fig. ?? we show the evolution of f
NL

for the same trajectory. Up
until the turn it is negligibly small, with fNL ⇠ O(10�2). During the turn and subsequent
oscillations we find that fNL also oscillates, with a peak amplitude of fNL ' 0.35. In the
final stage, however, fNL relaxes back down to an unobservably small value of O(10�2). The
behaviour of the power spectrum and fNL in this example are qualitatively very similar to
that observed in double quadratic inflation models, see e.g. [? ? ? ] and references therein.

Figure 4: Evolution of the normalised power spectrum P ⇣ = P⇣(N)/P⇣(Nfinal

) (left panel)
and fNL (right panel) for the example trajectory plotted in Fig. ??.

We have also considered the evolution of P⇣ and fNL in the other regimes R
mass

> 1 and
R

mass

⇠ 1. For trajectories with R
mass

> 1, such as those shown in the first panel of Fig. ??,
due to the fact that the trajectories quickly evolve to the � axis and reach an e↵ectively
single-field trajectory along the � axis, we find that P⇣ and fNL also quickly reach constant
values, with fNL ⇠ O(10�2). Note that the background trajectories shown in the first panel
of Fig. ?? do not oscillate about the � axis, and correspondingly we find that P⇣ and fNL

also do not oscillate before settling to their constant values. For trajectories with R
mass

⇠ 1,
such as those shown in the second panel of Fig. ??, we find that the evolution of P⇣ and fNL

is much more gradual, with fNL remaining O(10�2) throughout the evolution.

Exploring and constraining parameter space

Having looked at representative example trajectories in the three regimes R
mass

< 1, R
mass

⇠
1 and R

mass

> 1, we now proceed to put constraints on the parameters m� and R
mass

. In
doing so we consider thirty-one di↵erent mass ratios in the range 10�3  R

mass

 103,
distributed evenly over logR

mass

. For each value of R
mass

we then consider a 50 ⇥ 50 grid
of initial conditions (�⇤,�⇤), with �⇤ spanning the range 0  �⇤  6Mpl and �⇤ spanning
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m�/m� = 0.1

If a trajectory turns/oscillates, 
each quantities may have 
steps, peaks or oscillations. 

Evolutions on supuerhorizon scale!

We developed numerical approach 
based on δN-formalism



Figure 5: Predictions in the �⇤–�⇤ plane for the e-folding number N (upper left), spectral
tilt ns (upper right), tensor-to-scalar ratio r (lower left) and non-Gaussianity parameter f

NL

(lower right) for the case R
mass

= 1.0. The red shaded region in the upper left plot shows the
initial conditions for which 50 < N

total

< 60. Here N
total

is the total amount of e-foldings
from the horizon exit to the end of inflation. The light blue (dark blue) shaded region in the
upper right plot indicates the range of initial conditions for which ns lies within 1-� (2-�) of
the observed value. The grey shaded region in all plots corresponds to where ✏V > 1.

the range 0  �⇤  16Mpl.6 Next we neglect any points on the grid for which either ✏V > 1

6From our knowledge of the R2 and quadratic chaotic inflation models, we know that taking �⇤ > 6 or
�⇤ > 16 will always give N

total

> 60, but observationally we are only interested in the last 60 e-folds of
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m�/m� = 1.0
ns = 0.968± 0.006

fNL = 0.8± 5.0r < 0.11

(68% C.L.)

68% C.L.95% C.L.



Various mass-ratios

Background trajectories

In light of the preceding discussion, we see that the shape of trajectories in field space
will be independent of m�. As such, the only remaining parameters are R

mass

, �⇤ and
�⇤. Broadly speaking, we are interested in the three regimes R

mass

> 1, R
mass

⇠ 1 and
R

mass

< 1, and in Fig. ?? we plot example trajectories for the representative values R
mass

=
5, 1, 1/5. In each case we consider the three sets of initial conditions (�⇤/Mpl,�⇤/Mpl) =
(6, 3), (�⇤/Mpl,�⇤/Mpl) = (5, 3) and (�⇤/Mpl,�⇤/Mpl) = (6, 1.5), and each trajectory is
evolved until inflation ends. When interpreting the trajectories, one has to be careful to
recall that it is not only the potential shape that is important, as the e↵ect of the non-flat
field space must also be taken into account. In this model, for example, we have G�� = e2↵�.
Given that the slow-roll equation of motion for � takes the form 3H�̇ ' �G��V,�, we can
expect that for super-Planckian values of � the velocity is enhanced compared to what we
would naively expect from the gradient of the potential alone. Nevertheless, the trajectories
in Fig. ?? qualitatively agree with our naive expectation.

(a) (b)

(c)

Figure 1: Examples trajectories for three di↵erent values of R
mass

. We show the cases a)
R

mass

= 5.0, b) R
mass

= 1.0, and c) R
mass

= 0.2. For each value of R
mass

three trajectories
are plotted, with the initial conditions given as (�⇤/Mpl,�⇤/Mpl) = (6.0, 3.0) (magenta line),
(�⇤/Mpl,�⇤/Mpl) = (5.0, 3.0) (orange line) and (�⇤/Mpl,�⇤/Mpl) = (6.0, 1.5) (blue line).
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10�3  m�/m�  103

We investigated the mass-ratios
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Summary

・There is a strong motivation to consider multi-field 
　inflation models in string/supergravity inspired 
　model-building. 

・In the case of multi-field, we need to take into  
　account transfer of isocurvature perturbation. 

・In this work, we established the method to compute 
　predictions in interacting multi-field models with 
　non-canonical kinetic terms. 

・ fNL  is as small as single field cases. 

＊If you are interested in multi-field analysis, 
　　　　　　　　　　　　　I am happy to discuss with you!
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#
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This model contains… 
　・Two inflatons 
　・Interaction term 
　・Non-canonical kinetic term

van de Bruck and Paduraru (’15)

Set up : A simple extension of Starobinsky model



δN-formalism

⇣ ⇠ �N ⌘ N (t⇤, t ;x)�N(t⇤, t)

= NI��
I +

1

2
NIJ��

I��J

Sasaki, Stewart(’96)  Wands et al (’00)
On super-horizon scale,

I : derivatives wrt �I

＊Non-canonical kinetic terms: Curved field space
Yokoyama et al(’08)

Elliston et al(’12),  Kaiser et al(’13)

To compute each quantities, we only 
need background dynamics 
and NI , NIJ

Lkin = �1

2
GIJ@

µ�I@µ�
J

　　　can be interpreted as field space metric. 
In curved(non-trivial) field space, covariant formalism is useful.
GIJ

1, Contracting with field space metric 
2, Derivatives should be replaced 
     with Covariant derivatives

Points:

@IAJ

+
DIAJ = @IAJ � �K

IJAK
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