Why some string theorists care about complexity?

Michal P. Heller

aei.mpg.de/GQFI

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Germany
National Centre for Nuclear Research, Poland

1707. 08582 with Chapman, Marrochio & Pastawski

1807.xxxxx with Chapman, Eisert, Hackl, Jefferson, Marrochio, Myers & Pastawski

I will be talking about things around holography

$$ds^2 = \frac{\mathcal{L}^2}{z^2} \left(dz^2 - dt^2 + d\vec{x}^2 \right)$$

Aside: another kind of string phenomenology

1610.02023 lecture notes on "Holography, Hydrodynamization and Heavy-Ion Collisions"

Back to the main part of the talk

$$ds^2 = \frac{\mathcal{L}^2}{z^2} \left(dz^2 - dt^2 + d\vec{x}^2 \right)$$

How to decode the bulk geometry from ρ_{hQFT} ?

quant-info \(\cap \) cond-mat

hep-th

Entanglement $/|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle$ vs $|\uparrow\rangle|\downarrow\rangle$ / - key prop. of quantum-many body sys.

A powerful way to quantify it: entanglement entropy $S_B = -\text{tr}\left(\rho_B \log \rho_B\right)$

In holography: $S_B = rac{\mathrm{bulk\ area}}{4\,G_N}$

Ryu & Takayanagi hep-th/060300 I

"Entanglement is not enough"

Susskind et al. 2014-2018

 AdS_{d+2}

CFT_{d+1}:

In the eternal AdS-Schwarzschild black hole Penrose diagram there are regions in the interior not penetrated by any Ryu-Takayanagi surface!

There are, however, other geometric probes of these regions

What are we interested in reproducing?

see Myers et al. 2016-2018

 $C_V \sim Volume of codim-I max volume bulk slice$

 $\mathcal{C}_A \sim$ Action in codim-0 bulk region with null bdries

$$C_V[AdS_{d+1}] \sim \frac{\text{vol occupied by hCFT}_d}{\epsilon^{d-1}}$$

$$C_A[AdS_{d+1}] \sim \frac{\text{vol occupied by hCFT}_d}{\epsilon^{d-1}} \log \frac{\epsilon}{\alpha}$$

$$\partial_{t_L+t_R} \mathcal{C}_{A/V}[\mathrm{AdS} - \mathrm{Schw}_{d+1}]$$
 $\sim \mathrm{const}$

$C_{A/V}$ stands for complexity?

3) How to make sense now of the approximation?

4) How to count gates and deal with UV divergences?

Complexity \mathcal{C} : min. number of elem. unitary operations δU s.t. $|T\rangle \approx \delta U \dots \delta U |\uparrow \dots \uparrow\rangle$

2) What can now act as a set of elementary unitary operations (gates)?

> 1) What can be a simple reference state in continuum?

< 2017: entanglement entropy in a QFT

vs. complexity in a QFT

5) We want an approach that is computable \longrightarrow Gaussian States and free QFTs_{d+1}

I.Vacuum 1707.08582 with Chapman, Marrochio & Pastawski see also 1707.08570 by Jefferson, Myers

Holography = strong coupling QFTs. We do free QFTs. Universality to the rescue?

Now target / reference state is GS of
$$\int d^{d-1}x \left\{ \pi^2 + (\partial_x \phi)^2 + m_{1/2}^2 \phi^2 \right\}$$

We put the theory on the lattice to UV regulate it

$$\phi_1, \pi_1 \quad \phi_2, \pi_2 \qquad \qquad \dots \qquad \qquad \phi_N, \pi_N$$

Gates: $\delta U = e^{i\phi_1\pi_3\,\delta s}\,\mathrm{etc}\,\longrightarrow\,\mathrm{SP}(2N,\mathbb{R})$ group.

To calculate complexity, we will define a metric on* $SP(2N,\mathbb{R})$ and calculate geodesics

Many choices, but soluble ones
$$\frac{\text{cont.}}{\text{limit}}$$
 $\mathcal{C} \sim \sqrt{\text{vol} \int_{|k| \leq \Lambda} \mathrm{d}^{d-1} k \left(\log \frac{m_1^2 + k^2}{m_2^2 + k^2}\right)^2}$

What compares
$$\checkmark$$
 with $\mathcal{C}_{V/A}$ is $\mathcal{C} \sim \operatorname{vol} \int_{|k| \leq \Lambda} \mathrm{d}^{d-1}k \left| \log \frac{k}{m_2} \right| \underbrace{\int_{\mathrm{d}^{d-1}x \left\{ \pi^2 + m_2^2 \phi^2 \right\}}^{|R\rangle}$ GS of Li norm

II. Formation of TFD

1807.xxxxx with Chapman, Eisert, Hackl, Jefferson, Marrochio, Myers & Pastawski

For the TFD state, we have additional gates such as $\delta U = e^{i\,\phi_1^L\,\phi_3^R}$

However, there are choices one can make such that

$$C_{|TFD(t_L+t_R=0)\rangle} \sim \text{vol} \underbrace{\int_{k \leq \beta^{-1}} d^{d-1}k\left(\ldots\right) + 2 \times \text{vol} \underbrace{\int_{k \leq \Lambda} d^{d-1}k \left|\log \frac{k}{m_2}\right|}_{S_{\beta}}$$

As a result we get sth very similar to

III. Time-dependence of TFD 1807.xxxxx with Chapman, Eisert, Hackl, Jefferson, Marrochio, Myers & Pastawski

Complexity saturates since it is a sum of oscillatory funcs (free QFT!) that dephase

Not surprisingly, this is in stark contrast with holography:

$$\partial_{t_L+t_R} \mathcal{C}_{A/V}[\mathrm{AdS}-\mathrm{Schw}_{d+1}]$$
 $\sim \mathrm{const}$

Outlook 1707. 08582 with Chapman, Marrochio & Pastawski

see also 1707.08570 by Jefferson, Myers

1807.xxxxx with Chapman, Eisert, Hackl, Jefferson, Marrochio, Myers & Pastawski

The big picture: what is bulk in the hQFT language?

Here, focus on bulk volumes / actions and their conjectured relation to complexity

Poorly understood — key idea: work in free QFT and count on some universalities

$$\mathcal{C}_{A/V}[\text{AdS} - \text{Schw}_{d+1}]\Big|_{t_L + t_R = 0}$$

$$-2 \mathcal{C}_{A/V}[\text{AdS}_{d+1}] \sim S_{\beta}$$

 $\partial_{t_L+t_R} \mathcal{C}_{A/V}[\mathrm{AdS}-\mathrm{Schw}_{d+1}]$ $\sim const$

Beautiful parallel with thermodynamics vs. η/s