Mateusz Duch University of Warsaw

Kinetic decoupling and gauge invariance of the resonant annihilation in a vector dark matter model

String Phenomenology 2018 4 June 2018

MD, Bohdan Grzadkowski, JHEP 1709 (2017) 159 [1705.10777] MD, Bohdan Grzadkowski, Apostolos Pilaftsis, Gauge-dependence of the dark matter resonant annihilation amplitudes, in preparation.

Dark matter – motivation

Convincing evidence on various astrophysical and cosmological scales

2 Kinetic decoupling and gauge invariance of DM annihilation

Properties of dark matter:

- electrically neutral (non-luminous),
- non-relativistic (cold) (structure formation)
- stable or long-lived
- weakly interacting with ordinary matter

Dark matter interactions:

- annihilation production in the early universe and indirect detection (FERMI-LAT, MAGIC, H.E.S.S, ...)
- production collider searches
- scattering on nucleons direct detection (LUX, PANDA, XENON 1T)

STRONG CONSTRAINTS

SMALL COUPLING REGIONS ARE RELEVANT

Gross, Lebedev, Mambrini, 2015

Breit-Wigner resonance

Breit-Wigner resonance $2M_{\rm DM} \approx M_{\rm R}$

enhanced annihilation \rightarrow suppressed coupling

- low sensitivity to direct detection
- velocity dependent cross-section → possibility of enhanced indirect detection signals
- kinetic decoupling $T_{\rm DM} \neq T_{\rm SM}$?
- large self-interaction cross-section ?

Standard freeze-out mechanism

Boltzmann equation for DM phase space density $f_{DM}(\vec{p},t)$ L[f] = C[f] $g \int L[f_{DM}] \frac{d^3 p}{2\pi^3} \to \qquad \frac{dn}{dt} + 3Hn = -\langle \sigma v_{\rm rel} \rangle (n^2 - n_{\rm EQ}^2) \qquad \leftarrow g \int C[f_{DM}] \frac{d^3 p}{2\pi^3}$ DM yield Y = n/s, $x = M_{\rm DM}/T$ n – number density, s – entropy density $\frac{dY}{dx} = -\alpha \frac{\langle \sigma v_{\rm rel} \rangle}{x^2} (Y^2 - Y_{\rm EQ}^2), \qquad \alpha = \frac{s(M_{\rm DM})}{H(M_{\rm DM})}$ $\langle \sigma v \rangle [cm^3/s]$ 10-5 DM chemical decoupling 10-7 Y[x] $n_{EO} \langle \sigma v_{\rm rel} \rangle \sim H(x)$ 10^{-9} Approximate solution XCD 10^{-11} $Y_{\infty} \approx \frac{x_{CD}}{\alpha \langle \sigma v_{\rm rel} \rangle}$ 10^{-13} 10^{4} 10 100 1000 x=m/T

Standard assumption: DM is kinetically coupled to SM during freeze-out, i.e. it has the same temperature as the SM thermal bath

Annihilation near the resonance

6

Kinetic decoupling – simplified picture

Scatterings on the abundant relativistic SM states \rightarrow thermal equilibrium

- relic abundance requires small coupling between DM and SM
- scattering process is not resonantly enhanced

Comparision of the Hubble rate to scattering rate $H(T_{kd}) \sim \Gamma_{\text{scat}}(T_{kd}) \Rightarrow x_{kd} \left(\frac{\max[\delta, \gamma]^{3/2}}{10^{-6}}\right)^{\frac{1}{4}} \Longrightarrow T_{KD} \sim T_{CD}$ δ =-10⁻⁷, γ=10⁻⁵, M_{DM}=1 TeV 10⁻⁷ Kinetic and chemical decoupling temperatures YKD 10-8 **Y**_{EO} are comparable 10^{-9} $Y^{(0)}$ ≍ 10⁻¹⁰ YKD $T_{\rm DM} = \begin{cases} T_{\rm SM}, & \text{for } T \ge T_{\rm KD} = T_{\rm CD} \\ T_{\rm SM}^2 / T_{\rm KD}, & \text{for } T < T_{\rm KD} = T_{\rm CD} \end{cases}$ 10⁻¹¹ \mathbf{x}_{SAT}^{KD} X_{CD} XSAT 10⁻¹² 10⁻¹³ 10^{4} 10⁵ 10^{6} 10^{7} 10 100 1000 non-relativistic expanding gas $x = M_{DM}/T$

Kinetic decoupling and gauge invariance of DM annihilation

Kinetic decoupling – detailed description

Second moment of Boltzmann equation
$$\int p^2 L[f] = \int p^2 C[f]$$

Temperature parameter $T_{DM} \propto \int p^2 f(p) d^3 p$ $y \equiv \frac{M_{DM} T_{\rm DM}}{s^{2/3}}$

Coupled set of Boltzmann equations

$$\frac{dY}{dx} = -\frac{1 - \frac{x}{3} \frac{g'_{*s}}{g_{*s}}}{Hx} s \left(Y^2 \langle \sigma v_{\rm rel} \rangle_{x_{DM}(y)} - Y^2_{EQ} \langle \sigma v_{\rm rel} \rangle_x \right)$$

$$\frac{dy}{dx} = -\frac{1 - \frac{x}{3} \frac{g'_{*s}}{g_{*s}}}{Hx} \left[2M_{DM} c(T)(y - y_{EQ}) - sy \left(Y \left(\langle \sigma v_{\rm rel} \rangle_{x_{DM}} - \langle \sigma v_{\rm rel} \rangle_2 |_{x_{DM}} \right) - \frac{Y^2_{EQ}}{Y} \left(\langle \sigma v_{\rm rel} \rangle_x - \frac{y_{EQ}}{y} \langle \sigma v_{\rm rel} \rangle_2 |_x \right) \right) \right]$$

Kinetic decoupling and gauge invariance of DM annihilation

Abelian vector dark matter

Additional complex scalar field S

• singlet of
$$U(1)_Y \times SU(2)_L \times SU(3)_c$$
, charged under $U(1)_X$
• $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_\mu S)^* D^\mu S + \tilde{V}(H, S)$
 $V(H, S) = -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$
Vacuum expectation values: $\langle H \rangle = \frac{v_{SM}}{\sqrt{2}}$, $\langle S \rangle = \frac{v_x}{\sqrt{2}}$

$U(1)_X$ vector gauge boson V_{μ}

9

• Stability condition - no mixing of $U(1)_X$ with $U(1)_Y \xrightarrow{B_{\mu\nu}} V^{\mu\nu}$ $\mathcal{Z}_2: V_\mu \to -V_\mu, \qquad S \to S^*, \qquad S = \phi e^{i\sigma}: \phi \to \phi, \ \sigma \to -\sigma$

• Higgs mechanism in the hidden sector $M_{Z'} = g_x v_x$

Higgs couplings – mixing angle α , $M_{h_1} = 125 \text{ GeV}$

$$\mathcal{L} \supset \frac{h_1 \cos \alpha + h_2 \sin \alpha}{v} \left(2M_W W^+_\mu W^{\mu-} + M_Z^2 Z_\mu Z^\mu - \sum_f m_f \bar{f} f \right)$$

Kinetic decoupling and gauge invariance of DM annihilation

Resonance with a Higgs scalars

SM h_1 SM Z h_2

 $\langle \sigma v_{\rm rel} \rangle \propto \sin \alpha \cos \alpha$

Small α required by relic abundance

Resonance with the SM-like Higgs

- $M_{Z'} \approx 125/2 \text{ GeV}$ decay channel $h_1 \to Z'Z'$, if open suppressed by $\sin^2 \alpha$ and by phase space

$$\sqrt{1 - 4M_{Z'}^2/M_{h_1}^2} = \sqrt{\delta} \ll 1 \qquad \Gamma_{h_1 \to Z'Z'} \ll \Gamma_{SM}$$

Resonance with the second Higgs

- M_{Z'} ≈ M_{h₂}/2 GeV
 h₂ → SMSM suppressed by sin² α, $h_2 \rightarrow Z'Z'$ can dominate
 - near threshold effects

Resummed propagator

$$\Pi_{ij} = \frac{g_x^2 R_{2,i} R_{2,j}}{32\pi^2 M_{Z'}^2} \Big[\left(s^2 - 4M_{Z'}^2 s + 12M_{Z'}^4 \right) B_0(s, M_{Z'}^2, M_{Z'}^2) - \left(s^2 - m_i^2 m_j^2 \right) B_0(s, \xi_X M_{Z'}^2, \xi_X M_{Z'}^2) \Big]$$

Depends explicitly on the gauge-fixing parameter May grow with s² breaking unitarity

11 Kinetic decoupling and gauge invariance of DM annihilation

Pinch technique

Pinch self-energy

$$\hat{\Pi}_{ij} = \frac{g_x^2 R_{2,i} R_{2,j}}{8\pi^2} \left[\frac{(m_i m_j)^2}{4M_{Z'}^2} + \frac{m_i^2 + m_j^2}{2} - (2s - 3M_{Z'}^2) \right] B_0(s, M_{Z'}^2, M_{Z'}^2)$$

Condition that guaranties good high-energy behaviour of the process with resummed propagator

$$\lim_{s \to \infty} \frac{r_1^{\mu} r_2^{\nu} V_{\mu\nu}^{h_i Z' Z'}(q, r_1, r_2)}{s} = i g_x M_{Z'} \lim_{s \to \infty} \frac{\sum_i R_{2,j} \hat{\Pi}_{ji}(q^2)}{s}.$$

12 Kinetic decoupling and gauge invariance of DM annihilation

Bounds in the parameter space

- mixing angle set by relic density constraint
- maximal dark gauge coupling satisfying perturbative unitarity
- enhancement of low-velocity crosssection → strong bounds from indirect searches
- effects of early kinetic decoupling modify relic density by up to a factor of 2 in the allowed region

- resonant annihilation of dark matter has strong temperature dependence and leads to an early kinetic decoupling
- the evolution of dark matter density and temperature can be described with the set of coupled Boltzmann equations
- in vector dark matter models resonant annihilation requires gaugeindependent treatment