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• balanced view: ask a CS colleague or industry data scientist. 
 
typical Q’s from them: 
- what does your data “look like”?           (construction is fine) 
            bad answer: 3d toric variety. 
            good answer: constrained set of sets of vectors in Z3. 
 
- what are you trying to do / understand with it? (helps det. tech.)



    supervised machine learning.      
            (simple algs, neural nets, “predict”) 
 
    reinforcement learning (RL) / genetic algorithms: 
             (DNN + psych, DNN + evolution, agents that learn, move, and “search”) 
                        
 
    network science:   (“connect”) 
 
     topological data analysis:  (persistent homology, “shape” of data) 
 
    conjecture generation / intelligible AI:    
            (use ML to generate conjectures, prove theorems. “make rigorous”.) 
 
     generative adversarial networks (GANs):  
            (“generate”, produce interesting new examples from noise.)    and many more techniques  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The Data Science Zoo
and some string applications of those techniques, 

mostly string compactification, but a few AdS / CFT and QFT

blue = out, black = to appear but presented.



Three Goals
1) data science ⊋ supervised machine learning

2) use some to tackle physics in landscape, 
which is both enormous and complex. 

3) higher level view: understand the 
broad ideas and what is possible.

Desire better understanding of landscape implications  
for particle physics and cosmology. Q: requires formal theory progress  

but will smarter CS techniques also be necessary? Opinion: almost certainly.

broader string / QFT applications?

they have suite of techniques. we have many problems. 
is there a useful map between the two?



Outline
• Primary Dataset: 

   large ensemble of F-theory geometries,  
   physical facts about them.


• Data Science for Rigor: 
   supervised learning —> conjecture —> gauge sector theorem


• Data Science for Boundary Detection: 
   deep reinforcement learning the boundary of weak IIB.


• Data Science for Complexity:     (!! in progress !!) 
   deep reinforcement learning for Bousso-Polchinski CCs.



Large Dataset
• topologically distinct, F-theory geometries, 

connected in moduli space. BP prob on top. 

• have some universal physical features

[JH, Long, Sung] x 2, 1706 and 1709



• 4D F-theory: 3-fld base B, 7-brane structure at generic CS det’d by B 
topology, called “non-Higgsable cluster.”


• Starting point: B a weak Fano toric threefold, encoded in a fine 
regular star triangulation of a 3d reflexive polytope.


• Topological transitions: systematically perform sequences of toric 
blowups over toric points, then toric curves.


• Sequence Bounds: if all singularities are canonical, geom. is at finite 
distance from bulk of CS in the Weil-Petersson metric. 


• Classification: there are 82 (41,873,645) sequences over curves 
(points) that satisfy a sufficient condition for canonical singularities.


• Ensemble: all ways of performing these sequences of blowups. 
from an initial, fixed, triangulated polytope.

Alg. Geom: [Hayakawa] [Wang]               in F-theory: [Morrison]

The Mathematics
Some selective progress: Anderson, JH, 
Heckman, Grassi, Morrison, Rudelius, 

Shaneson, Taylor, Wang, Vafa.
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Fact: any FRS triangulation of this has 108 edges, 72 faces.

• Rep seq. of blowups: (topological transitions, project into board)

• Ensemble Size: (put the widgets on the triangulation)

The Combinatoric Picture

82108 ⇥ 4187364572 = 2.96⇥ 10755
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of 4319 3d reflexive polytopes, 
there’s one other polytope that yields this same number of geometries. 

they dominate the ensembles from other polytopes  
by over 60 orders of magnitude.

The Integer
exact lower bound on topologically distinct F-theory geometries.



• Universality from algorithm:     (nice when this possible) 
geometric ansatz with computable high prob. —> physics property


• for any geom., easy to compute geometric 7-brane structure at generic CS


• Universality of Non-Higgsable Seven-branes: 
 

• Universality of Large Gauge Sectors:  
 

• Cosmology Suggestion: Dark Glueballs 

• Universality of Strong Coupling:

related ensemble of [Taylor, Wang] has similar results
Physics Universality

rk(G) ≥ 160

A Problem: [JH, Nelson, Ruehle]            If solved, ultralight axions: [JH, Nelson, Ruehle, Salinas]



Rigor
• data science: 

supervised ML —> conjecture —> theorem 

• this physics application:     E6 in ensemble

[Carifio, JH, Krioukov, Nelson] 1707



An E6 Puzzle
• Gauge group result: dominated by  

       (interesting: groups with only self-conjugate reps!)


• Something SM-useful? E6 and SU(3) allowed for generic CS. 
 
- Simple conditions / probabilities for them not known. 
- in random samples, prob(E6) ~ 1/2000. 
- when E6 arises in RS, on a distinguished four-cycle T.


• Q: Can we train a ML model to accurately predict yes or no for E6 on T? 
 
Q: If so, can we learn how it makes its decision? 
          
           in our paper: called conjecture generation. 
           as a CS buzzword: intelligible AI. 
 
Point: ML -> conjecture -> theorem    means    numerical -> rigorous



Supervised Machine Learning
• given (input,output) pairs, 

learns to predict output 
test on unseen data,  
see how well the model does.


• Training data:   
in: blowup height data 
out: E6 or not. 
                          
10000 random samples w/ E6,  
10000 w/o


• Displayed:  
whisker plots of % accuracy 
with 10-fold cross validation.


• >99% accuracy common.  

training < 5 minutes per model,  
easy to implement using sklearn (python). 

note: simple techniques work well here, 
          no need for neural nets.



ML -> Conjecture -> Theorem
• supervised ML -> one variable was linchpin.


• that fact -> conjecture -> theorem (E6 iff).


• theorem -> probability computation. 
 
 

• probability checks: 5 batches, 2m random samples each. 
 
 

• the point: intelligible AI / conjecture generation can yield rigor. 
                 simpler the ML -> easier to conjecture. hard with ANNs?



Boundary Detection
• data science: 

reinforcement learning for AI game play. 

• physics application:  
what does weak IIB “look like” inside of F-theory? 

[JH, Nelson, Ruehle] to appear, 1808 
[JH, Long, Ruehle, Tian] to appear, 18xx



Picture: Boundary Detection
suppose you have a robot  in large, complex space 

that wants to determine the boundary between feature A and B.  

it doesn’t know the global structure of the space, 
but it does know how to determine in vs. out.

in some cases, random walking and checking in vs. out 
isn’t so inefficient, see above.

INTERESTING FEATURE B

INTERESTING FEATURE A



Picture: Boundary Detection

other case: random walk would not be so 
good, e.g. hard to discover deep crevices.    

Q: can we reward robot so it learns 
how to not go out of bounds? 

explore space more intelligently?



Reinforcement Learning
supervised ML predicts, RL explores / searches 

famous examples: AlphaGo & AlphaGo Zero

• an agent interacts in an environment.


• it perceives a state from state space.


• its policy picks and executes an action, given the state.


• agent arrives in new state, receives a reward.


• successive rewards accumulate into return. 

• return may penalize future rewards via discount factor.


• policy optimized to maximize reward, i.e. agent learns how to act!



Weak Coupling RL Game
• state space: 10755 F-theory geometries


• action space: sequences of pt. or curve blowups that  
           don’t immediately rule out weak coupling limit.


• the game: start with weak Fano (i.e. no blow-ups). peform sequence of 
blowups. if: no weak coupling limit, out of bounds, end game.  
else: weak coupling limit possible, reward = 100 points, repeat. 

• RL algorithm:   A3C,  an Asynchronous Advantage Actor-Critic


• Implementation: 
 
OpenAI Gym (RL framework) 
+ ChainerRL (provides A3C) 
+ physicist-provided game environment.

weak coupling limit
no weak coupling limit[Mnih et al] Google DeepMind, 2016.



RL Game Results

• learning in under 1m steps.


• score ~95k means can perform 95 
sequences of blowups.


• random walker: can only perform 
3-4 sequences of blowups before 
out of bounds (strong coupling).


• preliminary physics results: 
 
1) weak coupling very rare: 
1030 < Nweak < 1080 in 10755 ensemble 
 
2) typical weakly coupled model has 
at least 30 SO(8) seven-brane stacks 
that can typically be Higgsed in CS. 

# total steps during training 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recall: a “step” is performing a sequence of blowups.



Complexity
• RL progress on NP-hard problems? 

• first attempts at RL for Bousso-Polchinski. 

[JH, Long, Nelson, Ruehle], to appear



CCs and Complexity
• Bousso-Polchinski:


• Douglas-Denef:  
for general metric, whether or not there is a lattice point with small CC in above model is 
NP-hard.          (see DD for toy model caveats)


• Complexity vs. Practicality? in real world, concrete parameters, and it can pay it have 
“good enough” solutions to NP-hard problems.  (Amazon?)


• CS for CCs in another complex model: 
    
- optimization via Karmarkar-Karp @ 106 - 109 moduli.  lattice sieve @ lower, e.g. 104     
 
- model-free reinforcement learning (sim to A3C) @ 200 moduli.     (KNAP200)


• gen for complexity:        optimization? human-derived strategy, model-dependent.      
                                         RL? teach the game, machine learns the strategy. 
 
trade-offs, not a priori clear which wins. should try both. OTOH, but model-free is good,  
and there there are famous cases where RL wins (AlphaGo).  
 
    

[Arkani-Hamed, Dimopoulos, Kachru]

[Bao, Bousso, Jordan, Lackey]

[Bello et al.] Google Brain, 2016.

N 2 Zk



• state: a vector 


• action: ++ or - - on any vector entry.


• CC formula with choice Λ0 = -1. 
 

• distance from target ε:


• reward as function of power p:


• episode over if hit ε or max_steps in {10k, 100k}

Bousso-Polchinski RL game

N 2 Zk

⇤ = �1 +Ni gij Nj

d = |⇤� ✏|

r = d�p

• metrics from Wishart ensemble, O shift to shortest eigenvector.



Very Preliminary Results
tweaking / training code that is O(2) weeks old

LSTM, Nmod = 10, σ = .0001, γ = 0.99, β = .1

• note: Nmod = 10, 25 here.


• learned 5-6 OOM in evaluation runs. overall best so far:    Λ=10-16 


• tried genetic algorithms, too. both hit a wall — increase moduli? BP is better for > 100.

Nmod = 25, σ = .0001, γ = 0.9, β = 1.0



Will learning stop here or  
continue to smaller CCs? 

 
Can we get improvements at higher moduli, 

as expected for BP?  
 

Stay tuned.



String Theory and 
Data Science

• for rigor: 
supervised ML -> conjecture -> theorem. E6. 

• for boundary detection: 
RL to stay in bounds. Boundary of weak IIB. 

• for complexity: model-free RL on NP-hard 
landscape problems, such as BP CCs. 

standard supervised machine learning is quite useful, 
but I wanted to emphasize there is a much broader suite of techniques.
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• Q: in what 2015 movie did this pair co-star?

Finish: A Brain Teaser



• Q: in what 2015 movie did this pair co-star?
• A: they didn’t, these people don’t exist. 

 
generated by generated adversarial network. (GAN).

[Karras et al, 2017]

Finish: A Brain Teaser



Thanks for 
listening!


