Dilatonic couplings and the late time universe

Guillem Domenech

ITP, Heidelberg

Based on: Amendola, Bettoni, GD & Gomez, arXiv: 1803.06368 JCAP 1806 (2018) no.06, 029

July 4th, String Pheno 2018, Warsaw university

Late time universe

- Dark energy (looks like ∧ very much)
- (To be sure it's Λ) Test against other models
- Strong local constraints (Screenings?)
- What do we do?
 - Fundamental model?
 - Study most general set up?

Propagation of GWs

• Interesting signatures: modification of c_{gw} ! Horndeski '74 Deffayet +11

$$G_4R + G_{4,X}\left(\left(\Box\phi\right)^2 - \left(\nabla\nabla\phi\right)^2\right)$$

In ADM...

$$G_4R^{(3)} + (G_4 - 2XG_{4,X})(K_{ij}K^{ij} - K^2)$$
 $X = -\frac{1}{2}(\partial\phi)^2$

• Late Universe (up to z~0.08): $c_{gw} \approx 1 \pm 10^{-15}!$ GW170817

```
Ezquiaga+17, Creminelli +17,
Sakstein +17, ... (no X dependence in G<sub>4</sub>)
```

• Early Universe: $c_{gw} \neq 1$? (B-modes)

Higher-derivatives out?

More precisely

$$c_{gw}^2 = \frac{G_4 - \ddot{\phi} X G_{5,X}}{G_4 - 2X G_{4,X} - 2X \phi H G_{5,X}}$$

- Fine tuning? Easily spoiled! ($\Omega_{DM} \sim 27\%$!)
- Ways out?
 - Bg independent tuning (in DHOST) Langlois +17
 - Interacting dark sector?

Amendola +99 Miranda +17

Background

dependent!

Interacting dark sector

(Not to mess with SM) Non-universal coupling

$$\bar{g}_{\mu\nu} = e^{\beta\phi}g_{\mu\nu}$$

$$\mathcal{L} \sim \mathcal{L}_{\mathrm{Horn}}(\phi, g) + \mathcal{L}_{\mathit{DM}}(\bar{g}(\phi)) + \mathcal{L}_{\mathit{SM}}(g)$$

Non-conservation of DM energy density

(two interacting fluids)

$$\dot{\rho}_{DM} + 3H\rho_{DM} = -Q(\phi)\rho_{DM}$$
 $\dot{\rho}_{DE} + 3H(1+w_{DE})\rho_{DE} = Q(\phi)\rho_{DE}$

• Interesting cosmology? $\Omega_b/\Omega_{DM} \neq {\rm constant}$

$$Q \equiv \frac{d(\beta\phi)}{dt}$$

Alleviate H₀ or fσ₈ tensions (CMB and local exp).

Valentino +17 Miranda +17

- Baryogenesis Sakstein +17
- Effects to 21 cm line (z~17; dark ages). Costa +17
- At z<0.3 $\Omega_{DM}/\Omega_{DE} = constant?$ Amendola + 99

Doppelgänger DE

- Quite messy in general but:
 - Like Jordan \leftarrow Einstein frame $d\bar{\rho}_{DM}/d\bar{t} + 3\bar{H}\bar{\rho}_{DM} = 0$ $\bar{g}_{\mu\nu} = \mathrm{e}^{\beta\phi}g_{\mu\nu}$
 - We have Matter
 Dark Matter frame

$$1 + \bar{w}_{\text{eff}} = \frac{1}{1 - \alpha} \left(1 + w_{\text{eff}} - \frac{2}{3}\alpha - \frac{2}{3}\frac{d \ln(1 - \alpha)}{Hdt} \right) \qquad \alpha \equiv \frac{d(\beta\phi)}{Hdt} = \frac{Q}{H}$$

- Now they are decoupled $3H^2G_4 = \rho_{\phi} + \rho_{DM}$
- E.g. Canonical: $V \propto \mathrm{e}^{-\lambda \phi}$ $\rho_{\phi} \propto a^{-\lambda^2}$ $\lambda = \sqrt{3}$ $\rho_{\phi} \propto \rho_{DM}$ $G_4 = 1$
- In general: $Y = Xe^{-\lambda \phi} = \text{constant} \rightarrow G_i = e^{p_i \phi} a_i(Y)$

Tuning c_{gw}=1

Fix point, attractor with accelerated expansion

$$c_{gw}^{-2} = \frac{a_4 - 2Ya_{4,Y}}{a_4} \qquad \qquad a_{4,Y} \Big|_{Y=Y_*} = 0$$

A simple non-trivial choice is

$$a_4 = 1 + c_4 (1 - Y/Y_*)^n$$

Zero at the fix point

- The background dependence is now hidden in Y_*
- Is this choice still okay? What effects do we have?

Effect of baryons

- We should not forget that: $3H^2G_4 = \rho_{\phi} + \rho_{DM} + \rho_b(\phi)$
- Take us out of fix point by: $\Omega_b/\Omega_{DM} \approx 4 \%$
- You can see how sensitive it is:

$$\delta c_{gw}^2 \propto \frac{2Y^2 a_{4,YY}}{a_4} \left| \frac{\Omega_b}{\Omega_{DM}} \sim 10^{-1} \frac{Y^2 a_{4,YY}}{a_4} \right|_* < 10^{-15}$$

The Lagrangian is highly constrained: n>16!

$$\delta c_{gw}^2 \propto \sim 10^{-n} \frac{Y^n a_{4,Y^n}}{a_4} \bigg|_{*} < 10^{-15}$$

Note: This value is only at the fix point nowadays. In the past

$$a_4 = 1 + c_4 (1 - Y/Y_*)^n \neq 1$$

Summary

- Modified gravity may need a more fundamental approach
- Modifications to $c_{gw}=1$ seem unlikely (or at least hard to conceive) if due to DE field
- Interacting dark sector might provide ways out but Lagrangian very much constrained
- Possible effects in the early universe
- Origin of non-universal coupling?