Protected axions in a clockwork gauge symmetry model

Quentin Bonnefoy

based on arXiv:1804.01112
in collaboration with E. Dudas and S. Pokorski

Centre de Physique Théorique - École Polytechnique

StringPheno 2018
Warsaw, July 4th 2018
Axions: pseudo Nambu-Goldstone bosons (pNGB)
Axions: pseudo Nambu-Goldstone bosons (pNGB)

Two examples of limitations in axion model building:
Axions: pseudo Nambu-Goldstone bosons (pNGB)

Two examples of limitations in axion model building:

- low masses are not automatically consistent with UV completions in a quantum theory of gravity
Axions: pseudo Nambu-Goldstone bosons (pNGB)

Two examples of limitations in axion model building:

- low masses are not automatically consistent with UV completions in a quantum theory of gravity
- some axion models require intermediate scale ($\sim 10^{9-11}$ GeV) or super-Planckian dynamics
Mass range in axion models:

- Dynamical dark energy candidates
- « Fuzzy » dark matter
- $\log_{10}(m_a/eV)$
- QCD axion

Mass range:
- Small masses: need for a controlled explicit breaking of the axionic symmetry
- However: global symmetries expected to be broken by quantum gravity effects
Mass range in axion models:

Small masses: need for a controlled explicit breaking of the axionic symmetry
Mass range in axion models:

Small masses: **need for a controlled explicit breaking** of the axionic symmetry

However: **global symmetries expected to be broken by quantum gravity effects**
Protection of global symmetries: make them accidental.
Protection of global symmetries: make them accidental.

Famous gauge protection: NGB from extra dimensions
Protection of global symmetries: make them accidental.

Famous gauge protection: **NGB from extra dimensions**

Example: 5d abelian gauge theory compactified on S_1/\mathbb{Z}_2, with Dirichlet boundary conditions for A_μ
Protection of global symmetries: make them accidental.

Famous gauge protection: **NGB from extra dimensions**

Example: 5d abelian gauge theory compactified on S_1 / \mathbb{Z}_2, with Dirichlet boundary conditions for $A_\mu \rightarrow$ leaves in the spectrum a massless scalar (zero mode of A_5) with a shift symmetry
Protection of global symmetries: make them accidental.

Famous gauge protection: **NGB from extra dimensions**

Example: 5d abelian gauge theory compactified on S_1/\mathbb{Z}_2, with Dirichlet boundary conditions for $A_\mu \rightarrow$ leaves in the spectrum a massless scalar (zero mode of A_5) with a shift symmetry

Breaking of the shift symmetry: requires **non-local** suppressed effects
Axion decay constant range in axion models:

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \ldots$$
Axion decay constant range in axion models:

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + ...$$

QCD axion: $f_a \sim 10^{9-11}$ GeV
Quintessence/inflation/relaxion: $f_a \gtrsim M_P$
Axion decay constant range in axion models:

\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} aF_{\mu\nu} \tilde{F}^{\mu\nu} + ... \]

QCD axion: \(f_a \sim 10^{9-11} \) GeV
Quintessence/inflation/relaxion: \(f_a \gtrsim M_P \)

\(f_a \) naturally obtained from known scale?
Clockwork models:
Clockwork models:

Example of the scalar clockwork:

\[\mathcal{L} = - \sum_{k=0}^{N} (|\partial_{\mu} \phi_k|^2 + V(|\phi_k|^2)) - (\sum_{k=0}^{N-1} \epsilon_k \phi_k^q \phi_{k+1}^* + h.c.) \]
Clockwork models:

Example of the scalar clockwork:

\[\mathcal{L} = - \sum_{k=0}^{N} (|\partial_{\mu} \phi_k|^2 + V(|\phi_k|^2)) - (\sum_{k=0}^{N-1} \epsilon_k \phi_k^q \phi_{k+1}^* + h.c.) \]

\[\leftrightarrow \quad \text{Clockwork Goldstone boson } a_{cl.} \sim \frac{\theta_0}{q^N} + \ldots + \frac{\theta_{N-1}}{q} + \theta_N \]

and effective decay constants \(f_{\text{eff}} \sim q^i f \)
Clockwork models:

Example of the scalar clockwork:

\[
\mathcal{L} = - \sum_{k=0}^{N} (|\partial_{\mu} \phi_k|^2 + V(|\phi_k|^2)) - (\sum_{k=0}^{N-1} \epsilon_k \phi_k^q \phi_{k+1}^* + h.c.)
\]

\[\mapsto\text{ Clockwork Goldstone boson } a_{cl.} \sim \frac{\theta_0}{q^N} + ... + \frac{\theta_{N-1}}{q} + \theta_N \]

and effective decay constants \(f_{\text{eff}} \sim q^i f \)

Obtained from 5D with linear dilaton geometry.

\(\mathcal{L}_{5D} = g^{MN} \partial_M \phi \partial_N \phi(x^\mu, y) \) with \(ds^2 = e^{4k|y|/3}(dx^2 + dy^2) \)
This work:

Use a clockwork-inspired gauge group to protect an axion, and study its phenomenology
Outline

A gauge theory with a pGB

SM couplings

Application: FDM

Conclusion
A gauge theory with a pGB
A gauge theory: 4D UV-completion of a deconstructed abelian gauge theory on a linear dilaton background
A gauge theory: 4D UV-completion of a deconstructed abelian gauge theory on a linear dilaton background

\[
\mathcal{L} = -\frac{1}{4} \sum_{i=1}^{N} F_{\mu\nu,i} F_{i}^{\mu\nu} - \sum_{k=0}^{N} |D_{\mu} \phi_{k}|^{2} - V(\phi_{0}^{2}, \phi_{1}^{2}, \ldots)
\]

A gauge theory with a pGB SM couplings

Application: FDM

Conclusion

\[\mathcal{L} = -\frac{1}{4} \sum_{i=1}^{N} F_{\mu \nu, i} F_{i}^{\mu \nu} - \sum_{k=0}^{N} |D_\mu \phi_k|^2 - V(|\phi_0|^2, |\phi_1|^2, ...) \]

with one global accidental $U(1)$: $\phi_k \rightarrow e^{iq^k \alpha} \phi_k$
\[
\mathcal{L} = -\frac{1}{4} \sum_{i=1}^{N} F_{\mu\nu,i} F^{\mu\nu}_i - \sum_{k=0}^{N} |D_\mu \phi_k|^2 - V(|\phi_0|^2, |\phi_1|^2, \ldots)
\]

with one global accidental $U(1)$: $\phi_k \rightarrow e^{iq^k \alpha} \phi_k$

In the spectrum for a complete spontaneous breaking, Goldstone boson a:

\[
a \sim \frac{1}{q^N f_0} \theta_0 + \frac{1}{q^{N-1} f_1} \theta_1 + \ldots + \frac{1}{f_N} \theta_N
\]
A gauge theory with a pGB SM couplings

Application: FDM

Conclusion

\[\mathcal{L} = -\frac{1}{4} \sum_{i=1}^{N} F_{\mu\nu,i} F_{i}^{\mu\nu} - \sum_{k=0}^{N} |D_{\mu} \phi_{k}|^2 - V(|\phi_{0}|^2, |\phi_{1}|^2, ...) \]

with one global accidental \(U(1) \): \(\phi_{k} \rightarrow e^{iq_{k}\alpha} \phi_{k} \)

In the spectrum for a complete spontaneous breaking, **Goldstone boson** \(\alpha \)

\[a \sim \frac{1}{q^{N}f_{0}} \theta_{0} + \frac{1}{q^{N-1}f_{1}} \theta_{1} + \ldots \rightarrow \text{Site-dependent couplings?} \]
\[\mathcal{L} = -\frac{1}{4} \sum_{i=1}^{N} F_{\mu \nu, i} F_{i}^{\mu \nu} - \sum_{k=0}^{N} |D_{\mu} \phi_{k}|^{2} - V(|\phi_{0}|^{2}, |\phi_{1}|^{2}, ...) \]

with one global accidental \(U(1) \): \(\phi_{k} \rightarrow e^{iqk\alpha} \phi_{k} \)

How much approximate? Gauge invariant operators:

\[|\phi_{k}|^{2} \text{ and } \phi_{0} \phi_{1} ... \phi_{N}^{q} \]

\(\rightarrow \) exponential increase of the order of the breaking operators with \(q \) and \(N \)
SM couplings
Couplings to SM fields:

\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{ig_{a,\text{EDM}}}{f_a} a N \gamma_{\mu\nu} \gamma^5 N F^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_{\mu} a \overline{N} \gamma^\mu \gamma^5 N + \frac{g_{ae\bar{e}}}{f_a} \partial_{\mu} a \overline{e} \gamma^\mu \gamma^5 e \]
\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} aF_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_\mu a\overline{N} \gamma^\mu \gamma^5 N + \ldots \]
A gauge theory with a pGB

\[\mathcal{L} \supset \frac{g_{a \gamma \gamma}}{f_a} a F_{\mu \nu} \tilde{F}^{\mu \nu} + \frac{g_{a N N}}{f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N + \ldots \]

KSVZ model:

\[\mathcal{L} \supset \phi \overline{Q}_L Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F} \]
\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N + \ldots \]

KSVZ model:

\[\mathcal{L} \supset \phi \bar{Q}_L Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F} \]

Gauge-anomalous now. **Need more fermions:**

\[\mathcal{L} \supset \phi_0 \bar{Q}_{L,0} Q_{R,0} + h.c. \]
A gauge theory with a pGB SM couplings Application: FDM

\[\mathcal{L} \supset \frac{g_a \gamma}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_a N N}{f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N + \ldots \]

KSVZ model:

\[\mathcal{L} \supset \phi \bar{Q}_L Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} \bar{F} \tilde{F} \]

Gauge-anomalous now. **Need more fermions:**

\[\mathcal{L} \supset \phi_0 \bar{Q}_{L,0} Q_{R,0} + h.c. \]

\[\xrightarrow{U(1)_1 \text{ anom.}} \mathcal{L} \supset \phi_0 \bar{Q}_{L,0} Q_{R,0} + \sum_{i=1}^{q} \phi_1 \bar{Q}^i_{L,1} Q^i_{R,1} + h.c. \]
KSVZ model:

\[\mathcal{L} \supset a \gamma^\mu \tilde{F}^\mu \gamma^5 N + ... \]

Gauge-anomalous now. Need more fermions:

\[\mathcal{L} \supset \phi Q_L Q_R + h.c. \quad Q \text{ triangle loop} \quad \frac{a}{f} F \tilde{F} \]

\[U(1)_1 \text{ anom.} \quad \mathcal{L} \supset \phi_0 Q_{L,0} Q_{R,0} + \sum_{i=1}^{q} \phi_1 Q_{L,1}^i Q_{R,1}^i + h.c. \]

\[U(1)_2 \text{ anom.} \quad \mathcal{L} \supset \phi_0 Q_{L,0} Q_{R,0} + \sum_{i=1}^{q} \phi_1 Q_{L,1}^i Q_{R,1}^i + \sum_{i=1}^{q^2} \phi_2 Q_{L,2}^i Q_{R,2}^i + h.c. \]

\[U(1)_3 \text{ anom.} \quad \mathcal{L} \supset ... \]
A gauge theory with a pGB SM couplings

Application: FDM

Conclusion

\[
\mathcal{L} \supset \frac{g_a \gamma_\gamma}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_a N N}{f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N + ...
\]

KSVZ model:

\[
\mathcal{L} \supset \phi \bar{Q}_L Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} a \frac{f}{f} F \tilde{F}
\]

Gauge-anomalous now. Need more fermions:

\[
\mathcal{L} \supset \phi_0 \bar{Q}_{L,0} Q_{R,0} + h.c.
\]

\[
\xrightarrow{U(1)_1 \text{ anom.}} \mathcal{L} \supset \phi_0 \bar{Q}_{L,0} Q_{R,0} + \sum_{i=1}^{q} \phi_1 \bar{Q}_{L,1} Q_{R,1} + h.c.
\]

\[
\xrightarrow{U(1)_2 \text{ anom.}} \ldots
\]

\[
\xrightarrow{\text{triangle loops}} \sqrt{1+q^2+\ldots+q^{2N}} \frac{f}{f} a F \tilde{F}
\]
A gauge theory with a pGB SM couplings

Application: FDM

Conclusion

\[\mathcal{L} \supset \frac{g_{a \gamma \gamma}}{f_a} a F_{\mu \nu} \tilde{F}^{\mu \nu} + \frac{g_{a N N}}{f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N + \ldots \]

Exponentially reduced effective decay constant:

\[f_{\text{eff}} \sim \frac{f}{q^N} \]
Exponentially reduced effective decay constant:

\[f_{\text{eff}} \sim \frac{f}{q^N} \]

Still requires \(\sim q^N \) additional fermions
Exponentially reduced effective decay constant:

$$f_{\text{eff}} \sim \frac{f}{q^{N}}$$

Still requires $\sim q^{N}$ additional fermions

Ex: to get $f_{\text{eff}} \sim 10^{12}$ GeV from $f \sim M_{P}$, needs 10^{6} fermions (at the Planck scale)
Exponentially reduced effective decay constant:

\[f_{\text{eff}} \sim \frac{f}{q^{N}} \]

Still requires \(\sim q^{N} \) additional fermions

Ex: to get \(f_{\text{eff}} \sim 10^{12} \text{ GeV} \) from \(f \sim M_{P} \), needs \(10^{6} \) fermions (at the Planck scale) VS \(10^{12} \) if \(q = 1 \)
Exponentially reduced effective decay constant:

\[f_{\text{eff}} \sim \frac{f}{q^N} \]

Still requires \(\sim q^N \) additional fermions

Ex: to get \(f_{\text{eff}} \sim 10^{12} \) GeV from \(f \sim M_P \), needs \(10^6 \) fermions (at the Planck scale) VS \(10^{12} \) if \(q = 1 \)

Due to the number of additional fermions AND the high accidental global charges:

\[f_{\text{eff}} = \frac{f}{\sqrt{\sum_{\text{fermions}} \text{charges}}} \sim \frac{f}{\sqrt{q^N q^N}} \]
A gauge theory with a pGB

SM couplings
Application: FDM
Conclusion

\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N + ... \]
A gauge theory with a pGB SM couplings Application: FDM Conclusion

\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N + \ldots \]

Example: coupling to the first SM generation

\[\mathcal{L} \supset -\frac{1}{M_P} \left(\bar{u}_R H \phi_i Y_u Q_L + \bar{d}_R (H \phi_i)^* Y_d Q_L + \bar{e}_R (H \phi_i)^* Y_e L_L \right) + h.c. \]
A gauge theory with a pGB SM couplings

Application: FDM

Conclusion

\[\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_{\mu} a \bar{N} \gamma^\mu \gamma^5 N + \ldots \]

Example: coupling to the first SM generation

\[\mathcal{L} \supset -\frac{1}{M_P} \left(\bar{u}_R H \phi_i Y_u Q_L + \bar{d}_R (H \phi_i)^* Y_d Q_L + \bar{e}_R (H \phi_i)^* Y_e L_L \right) + h.c. \]

\[\text{chiral redef.} \quad \mathcal{L} \supset \frac{-i q^i \partial_\mu a}{2 \sqrt{1 + \ldots + q^{2N} f}} \left(\bar{u} \gamma_5 \gamma^\mu u + \bar{d} \gamma_5 \gamma^\mu d + \bar{e} \gamma_5 \gamma^\mu e \right) \]
\[\mathcal{L} \supset \frac{g_a}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_a N N}{f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N + \ldots \]

Example: coupling to the first SM generation

\[\mathcal{L} \supset - \frac{1}{M_P} \left(u_R H \phi_i Y_u Q_L + d_R (H \phi_i)^* Y_d Q_L + e_R (H \phi_i)^* Y_e L_L \right) + h.c. \]

chiral redef. \quad \mathcal{L} \supset \frac{-i q^i \partial_\mu a}{2 \sqrt{1 + \ldots + q^{2N} f}} (\bar{u} \gamma_5 \gamma^\mu u + \bar{d} \gamma_5 \gamma^\mu d + \bar{e} \gamma_5 \gamma^\mu e) \]

Site-dependent coupling to the spins derived in minimal setup
Axion field \(a = \frac{\theta_0 + q\theta_1 + \ldots + q^N\theta_N}{\sqrt{1+q^2+\ldots+q^{2N}}} \)

In the effective theory:

\[
\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aN}}{f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N + \ldots
\]
Axion field \(a = \frac{\theta_0 + q\theta_1 + \ldots + q^N\theta_N}{\sqrt{1 + q^2 + \ldots + q^{2N}}} \)

In the effective theory:

\[
\sqrt{1 + q^2 + \ldots + q^{2N}} \frac{g_{a\gamma\gamma}}{f_a} a F \tilde{F} + \frac{g_{aNN}}{f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N + \ldots
\]

Scales:

\[
\begin{align*}
&f \quad \frac{f_a}{g_{a\gamma\gamma}} \sim \frac{f}{q^N} \\
&\frac{f_a}{g_{aee}} \sim \frac{f}{q^{i-N}}
\end{align*}
\]
Application: FDM
For an ALP dark matter candidate:
For an ALP dark matter candidate:

Masses can be as low as $m \sim 10^{-22}$ eV ("fuzzy" dark matter candidate)

Can be perturbative or non-perturbative
For an ALP dark matter candidate:

Masses can be as low as $m \sim 10^{-22}$ eV ("fuzzy" dark matter candidate)

Can be **perturbative or non-perturbative**

Focus here on **perturbative gravitational origin** and on **misalignment mechanism** (with pre-inflationary breaking):

\[
V = -\frac{\phi_0 \phi_1^q \ldots \phi_N^q}{M_P^{1+q+\ldots+q^N-4}} \supset -\left(\frac{f}{M_P}\right)^{1+q+\ldots+q^N} M_P^4 \cos\left(\frac{a}{f_a}\right)
\]

and

\[
\langle a_{\text{init}} \rangle = \text{random}
\]
\[\Omega_a h^2 = 0.12 \text{ when:} \]

\begin{align*}
\text{ALP DM} & \quad q=2, q=4 \\
& \quad q=3, q=5 \\
& \quad q=6 \\
\text{QCD axion} & \\
\end{align*}

N=2

N=3
Detection of spin precession (with $\frac{\partial \mu \alpha}{f_a} \overline{N} \gamma^\mu \gamma^5 N$):
Detection of spin precession (with $\frac{\partial_{\mu} a}{f_a} \overline{N} \gamma^\mu \gamma^5 N$):
Detection of spin precession (with $\frac{\partial_{\mu} a}{f_a} \overline{N} \gamma_{\mu} \gamma^5 N$): Coupled at site N
Detection of spin precession (with $\frac{\partial a}{f_\alpha} \overline{N} \gamma^\mu \gamma^5 N$): Coupled at site 0
Conclusion
We considered a pGB protected against (gravitational) breaking effects. Its mass is easily very small, even with few additional gauge groups.
We considered a pGB protected against (gravitational) breaking effects. Its mass is easily very small, even with few additional gauge groups.

It can have all usual axion couplings, associated to scales which display the clockwork charges of the scalars. While axion-spin couplings are generated in minimal setups, anomalous couplings to gauge fields require an additional fermion sector.
We considered a pGB protected against (gravitational) breaking effects. Its mass is easily very small, even with few additional gauge groups.

It can have all usual axion couplings, associated to scales which display the clockwork charges of the scalars. While axion-spin couplings are generated in minimal setups, anomalous couplings to gauge fields require an additional fermion sector.

In the minimal setup, the (unavoidable) gravity contribution is sufficient to provide the correct DM density, and spin-precession-based searches can detect such a particle.
Thank you!
Backups
Example of a Peccei-Quinn symmetry:

Peccei-Quinn symmetry:

Explains why the \mathbb{CP}^n "θ-term" $\mathcal{L}_{\text{QCD}} \supset \frac{\theta_{\text{QCD}}}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$ verifies $\theta_{\text{QCD}} < 10^{-10}$

Postulates a global symmetry with a $SU(3)^2 \times U(1)_{PQ}$ anomaly → makes θ_{QCD} dynamical (axion) and stabilizes it at $\theta_{\text{QCD}} = 0$
PQ symmetry: Global symmetry with a $SU(3)^2 \times U(1)_{PQ}$ anomaly + axion $\rightarrow \theta_{QCD} = 0$

Specific realization: **KSVZ model** with

$$\mathcal{L}_{PQ} \supset \phi \overline{Q}_L Q_R + h.c. - V(|\phi|^2), \phi \xrightarrow{U(1)_{PQ}} e^{i\alpha} \phi \text{ and } \phi = \frac{f+r}{\sqrt{2}} e^{i\frac{a}{f}}.$$

Then:

$$\text{QCD anom. + instantons } \rightarrow \mathcal{L} \supset m_{\pi}^2 f_{\pi}^2 \overline{\sigma m_u m_d} \cos\left(\frac{a}{f} - \theta_{QCD}\right)$$

Possible correction: $\mathcal{L}_{PQ} \supset \frac{\phi^n}{M_P^{n-4}} + h.c. \rightarrow \text{destabilizes} \theta < 10^{-10}$ if $n < 10$ (if $f \gtrsim 10^9$ GeV). Indeed:

$$\frac{\phi^n}{M_P^{n-4}} \text{ term } \rightarrow \mathcal{L} \supset \left(\frac{f}{\sqrt{2} M_P}\right)^n M_P^4 \cos\left(\frac{na}{f}\right)$$
Protection of global symmetries: make them accidental.

- Ex: B, L in the renormalizable standard model lagrangian
- $U(1)_{PQ}$ protection: Barr and Seckel (1992)

<table>
<thead>
<tr>
<th>Fields</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>$Q^i_L = 1\ldots q$</th>
<th>$\tilde{Q}^i_L = 1\ldots p$</th>
<th>$Q^i_R = 1\ldots p+q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU(3)$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$U(1)$</td>
<td>p</td>
<td>q</td>
<td>p</td>
<td>$-q$</td>
<td>0</td>
</tr>
<tr>
<td>$U(1)_{PQ}$</td>
<td>q</td>
<td>$-p$</td>
<td>q</td>
<td>p</td>
<td>0</td>
</tr>
</tbody>
</table>

where $\gcd(p, q) = 1$ and $p + q \geq 10$

$$
\mathcal{L} \supset \phi_1 Q_L Y Q_R + \phi_2^* \tilde{Q}_L \tilde{Y} Q_R + \frac{\phi_1 \phi_2^p}{M_P^{p+q-4}} + h.c.
$$

$\mathcal{L}_{PQ} \supset \phi_1 Q_L Y Q_R + \phi_2^* \tilde{Q}_L \tilde{Y} Q_R + \frac{\phi_1 \phi_2^p}{M_P^{p+q-4}} + h.c.$
\[\mathcal{L} = -\frac{1}{4} \sum_{i=1}^{N} F_{\mu\nu,i} F_{i}^{\mu\nu} - \sum_{k=0}^{N} |D_{\mu} \phi_{k}|^{2} - V(|\phi_{0}|^{2}, |\phi_{1}|^{2}, ...) \]

with one global accidental $U(1)$: $\phi_{k} \rightarrow e^{iq^{k} \alpha} \phi_{k}$

Gravitational breaking under control:

\[\mathcal{L} \supset \frac{\phi_{0}\phi_{1}^{q}...\phi_{N}^{q^{N}}}{M_{P}^{1+...+4}} \rightarrow m_{a}^{(grav)} = \left(\frac{f}{\sqrt{2} M_{P}} \right)^{\frac{q+...+q^{N}-1}{2}} \sqrt{1+q^{2}+...+q^{2N}} M_{P} \]
Mass suppression with **few additional gauge groups**:
A gauge theory with a pGB SM couplings

Application: FDM

Conclusion

\[\mathcal{L} \supset \frac{g_{\alpha \gamma \gamma}}{f_a} a F_{\mu \nu} \tilde{F}^{\mu \nu} + \frac{g_{a NN}}{f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N + \ldots \]

Number of fermions \(\sim q^N \): growing with protection quality.

General feature:

\[\mathcal{L} \supset - \sum_i (\mathcal{O}_i \overline{\psi}_{i,L} \psi_{i,R}) \xrightarrow{\text{triangle loops}} \frac{i}{32 \pi^2} \log \left(\prod_i \mathcal{O}_i \right) F \tilde{F} \]
For a QCD axion:

Protection efficient if $m_{a}^{(\text{grav})} < 10^{-5} \left(m_{a}^{(\text{QCD})} \sim \frac{m_{\pi}f_{\pi}}{2f_{a}} \right)$

(with f_{a} defined by the axion-gluons coupling: $\mathcal{L} \supset \frac{a}{f_{a}} G \tilde{G}$)

In our setup:

$$f_{a} = \frac{f}{\sqrt{1 + q^{2} + \ldots + q^{2N}}}$$
\[\theta_{\text{QCD}} < 10^{-10} \text{ if:} \]
\[
\begin{bmatrix}
 m_a^{(\text{QCD})} \\
 m_a^{(\text{grav})}
\end{bmatrix} \sim \frac{m_\pi f_\pi}{2f_a} > 10^5 \begin{bmatrix}
 m_a^{(\text{grav})} \\
 (\frac{f}{M_P})^{q+\ldots+q^N-1} \frac{f}{f_a M_P}
\end{bmatrix}
\]
Protected QCD axion with $f \sim 10^{11}$ GeV and $q = 3, N = 2 \rightarrow 13$ additional colored Dirac fermions (+13 additional singlet Dirac fermions)

No Landau pole for QCD below the Planck mass
Stability of the DM ALP’s?

No anomaly: **no ALP-photon conversion** via usual
\[\mathcal{L} \supset \frac{a}{f_a} F \tilde{F} \]

Instead: **derivative interactions** + tiny mass → long lifetime

Example: coupling to a heavy anomaly-free set of electrically charged fermions:
\[\mathcal{L} \supset y_1 \phi_i \psi_{R,1} \psi_{L,1} + y_2 \phi_i \psi_{L,2} \psi_{R,2} + h.c. . \]

\[
\begin{align*}
\text{fermions integr.} & \quad \mathcal{L}_{\text{eff}} \supset \frac{e^2}{48\pi^2 q_i f} \left(\frac{1}{m_1^2} - \frac{1}{m_2^2} \right) \left(\Box a F \tilde{F} - \frac{1}{2} \partial_\mu a F_{\nu\eta} \partial^\eta \tilde{F}^{\mu\nu} \right)
\end{align*}
\]

Lifetimes for the FDM: \(~ 10^{300} \) s