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Dirichlet boundary conditions for Aµ → leaves in the spectrum
a massless scalar (zero mode of A5) with a shift symmetry

Breaking of the shift symmetry: requires non-local
suppressed effects
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Clockwork models:

Example of the scalar clockwork:

L = −
∑N

k=0(|∂µφk|
2 + V (|φk|2))− (

∑N−1
k=0 εkφ

q
kφ
∗
k+1 + h.c.)

↪→ Clockwork Goldstone boson acl. ∼ θ0
qN

+ ...+
θN−1

q + θN
↪→ and effective decay constants feff ∼ qif

Obtained from 5D with linear dilaton geometry.

Scalar:

L5D = gMN∂Mφ∂Nφ(xµ, y) with ds2 = e4k|y|/3(dx2 + dy2)
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This work:

Use a clockwork-inspired gauge group to
protect an axion, and study its phenomenology



Introduction A gauge theory with a pGB SM couplings Application: FDM Conclusion

Outline

A gauge theory with a pGB

SM couplings

Application: FDM



Introduction A gauge theory with a pGB SM couplings Application: FDM Conclusion

A gauge theory with a pGB



Introduction A gauge theory with a pGB SM couplings Application: FDM Conclusion

A gauge theory: 4D UV-completion of a deconstructed
abelian gauge theory on a linear dilaton background

L = −1
4

∑N
i=1 Fµν,iF

µν
i −

∑N
k=0 |Dµφk|2 − V (|φ0|2, |φ1|2, ...)

Ahmed & Dillon (2017), Coy Frigerio & Ibe (2017), Choi Im & Shin (2017)
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L = −1
4

∑N
i=1 Fµν,iF

µν
i −

∑N
k=0 |Dµφk|2 − V (|φ0|2, |φ1|2, ...)

with one global accidental U(1): φk → eiq
kαφk

How much approximate? Gauge invariant operators:

|φk|2 and φ0φ
q
1...φ

qN

N

→ exponential increase of the order of the breaking
operators with q and N
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Couplings to SM fields:

L ⊃ gaγγ
fa

aFµνF̃
µν +

iga,EDM

fa
aNγµνγ

5NFµν

+
gaNN
fa

∂µaNγ
µγ5N +

gaee
fa

∂µaeγ
µγ5e
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fa

∂µaNγ
µγ5N + ...

KSVZ model:

L ⊃ φQLQR + h.c.
Q triangle loop−−−−−−−−−→ a

f
F F̃

Gauge-anomalous now. Need more fermions:

L ⊃ φ0QL,0QR,0 + h.c.

U(1)1 anom.−−−−−−−−→ L ⊃ φ0QL,0QR,0 +

q∑
i=1

φ1QiL,1Q
i
R,1 + h.c.

U(1)2 anom.−−−−−−−−→ L ⊃ φ0QL,0QR,0 +

q∑
i=1

φ1QiL,1Q
i
R,1 +

q2∑
i=1

φ2QiL,2Q
i
R,2 + h.c.

U(1)3 anom.−−−−−−−−→ ...
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L ⊃ gaγγ
fa
aFµνF̃

µν +gaNN
fa

∂µaNγ
µγ5N + ...

Exponentially reduced effective decay constant:

feff ∼ f
qN

Still requires ∼ qN additional fermions

Ex: to get feff ∼ 1012 GeV from f ∼MP , needs 106 fermions (at
the Planck scale)

VS 1012 if q = 1

Due to the number of additional fermions AND the high
accidental global charges:

feff =
f√∑

fermions(charges)
∼ f√

qNqN
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L ⊃ gaγγ
fa
aFµνF̃

µν+ gaNN
fa

∂µaNγ
µγ5N +...

Example: coupling to the first SM generation

L ⊃ − 1

MP

(
uRHφiYuQL + dR(Hφi)

∗YdQL + eR(Hφi)
∗YeLL

)
+ h.c.

chiral redef.−−−−−−−→ L ⊃ −iqi∂µa
2
√

1 + ...+ q2Nf
(uγ5γ

µu+ dγ5γ
µd+ eγ5γ

µe)

Site-dependent coupling to the spins derived in minimal
setup
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L ⊃ gaγγ
fa
aFµνF̃

µν + gaNN
fa

∂µaNγ
µγ5N +...

Axion field a = θ0+qθ1+...+qNθN√
1+q2+...+q2N

In the effective theory:

√
1+q2+...+q2N

f aF F̃
qi∂µa√

1+q2+...+q2Nf
Nγµγ5N

Scales: f fa
gaγγ
∼ f

qN
fa
gaee
∼ f

qi−N
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For an ALP dark matter candidate:

Masses can be as low as m ∼ 10−22 eV ("fuzzy" dark matter
candidate)

Can be perturbative or non-perturbative

Focus here on perturbative gravitational origin and on
misalignment mechanism (with pre-inflationnary breaking):

V = − φ0φ
q
1...φ

qN

N

M1+q+...+qN−4
P

⊃ −
(

f
MP

)1+q+...qN
M4
P cos

(
a
fa

)
and

< ainit >=random
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Ωah
2 = 0.12 when:
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We considered a pGB protected against (gravitational)
breaking effects. Its mass is easily very small, even with few
additional gauge groups.

It can have all usual axion couplings, associated to scales
which display the clockwork charges of the scalars. While
axion-spin couplings are generated in minimal setups, anomalous
couplings to gauge fields require an additional fermion sector.

In the minimal setup, the (unavoidable) gravity contribution
is sufficient to provide the correct DM density, and
spin-precession-based searches can detect such a particle.
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Thank you!
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Backups
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Example of a Peccei-Quinn symmetry:

Peccei-Quinn symmetry:

Explains why the ��CP "θ-term" LQCD ⊃
θQCD
32π2 ε

µνρσFµνFρσ
verifies θQCD < 10−10

Postulates a global symmetry with a SU(3)2 × U(1)PQ
anomaly → makes θQCD dynamical (axion) and

stabilizes it at θQCD = 0
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PQ symmetry: Global symmetry with a SU(3)2 × U(1)PQ
anomaly + axion→ θQCD = 0

Specific realization: KSVZ model with

LPQ ⊃ φQLQR + h.c.− V (|φ|2), φ
U(1)PQ−−−−−→ eiαφ and φ = f+r√

2
e
i a
f .

Then:

QCD anom. + instantons→ L ⊃ m2
πf

2
π

√
mumd

mu+md
cos
(
a
f − θQCD

)
Possible correction: L��PQ ⊃

φn

Mn−4
P

+ h.c.→ destabilizes

θ < 10−10 if n < 10 (if f & 109 GeV). Indeed:

φn

Mn−4
P

term→ L ⊃
( f√

2MP

)n
M4
P cos

(
na
f

)
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Protection of global symmetries: make them accidental.

• Ex: B, L in the renormalizable standard model lagrangian
• U(1)PQ protection: Barr and Seckel (1992)

Fields
1

1
φ1 φ2 Qi=1...q

L Q̃i=1...p
L Qi=1...p+q

R

SU(3) 1 1 3 3 3
U(1) p q p −q 0
U(1)PQ q −p q p 0

where gcd(p, q) = 1 and p+ q ≥ 10

L ⊃ φ1QLY QR + φ∗2Q̃LỸ QR︸ ︷︷ ︸
LPQ

+
φq1φ

∗p
2

Mp+q−4
P︸ ︷︷ ︸
L��PQ

+h.c.
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L = −1
4

∑N
i=1 Fµν,iF

µν
i −

∑N
k=0 |Dµφk|2 − V (|φ0|2, |φ1|2, ...)

with one global accidental U(1): φk → eiq
kαφk

Gravitational breaking under control:

L ⊃ φ0φ
q
1...φ

qN

N

M1+...−4
P

→ m
(grav)
a =

(
f√
2MP

) q+...+qN−1
2 √

1+q2+...+q2NMP
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Mass suppression with few additional gauge groups:
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L ⊃ gaγγ
fa
aFµνF̃

µν +gaNN
fa

∂µaNγ
µγ5N + ...

Number of fermions ∼ qN : growing with protection quality.
General feature:

L ⊃ −
∑
i

(Oiψi,Lψi,R)
triangle loops−−−−−−−−→ i

32π2
log

(∏
i

Oi

)
FF̃
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For a QCD axion:

Protection efficient if m(grav)
a < 10−5

(
m

(QCD)
a ∼ mπfπ

2fa

)
(with fa defined by the axion-gluons coupling: L ⊃ a

fa
GG̃)

In our setup:

fa =
f√

1 + q2 + ...+ q2N
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θQCD < 10−10 if:[
m

(QCD)
a ∼ mπfπ

2fa

]
> 105

[
m

(grav)
a ∼

(
f
MP

) q+...+qN−1
2 f

fa
MP

]
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Protected QCD axion with f ∼ 1011 GeV and q = 3, N = 2→
13 additional colored Dirac fermions (+13 additional singlet
Dirac fermions)

No Landau pole for QCD below the Planck mass
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Stability of the DM ALP’s?

No anomaly: no ALP-photon conversion via usual
L ⊃ a

fa
FF̃

Instead: derivative interactions + tiny mass → long
lifetime

Example: coupling to a heavy anomaly-free set of electrically
charged fermions:

L ⊃ y1φiψR,1ψL,1 + y2φiψL,2ψR,2 + h.c. .

fermions integr.−−−−−−−−−→ Leff ⊃
e2

48π2qif

( 1

m2
1

− 1

m2
2

)
(�aF F̃−1

2
∂µaFνη∂

ηF̃µν)

Lifetimes for the FDM: ∼ 10300s
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