Introduction 0000000 A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

ション ふゆ マ キャット マックシン

Conclusion 00

Protected axions in a clockwork gauge symmetry model

Quentin Bonnefoy

based on arXiv:1804.01112 in collaboration with E. Dudas and S. Pokorski

Centre de Physique Théorique - École Polytechnique

StringPheno 2018 Warsaw, July 4th 2018

Introduction
000000

A gauge theory with a pGB $_{\rm OOOO}$

SM couplings 000000 Application: FDM 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Conclusion 00

Axions: pseudo Nambu-Goldstone bosons (pNGB)

Introduction
000000

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Conclusion 00

Axions: pseudo Nambu-Goldstone bosons (pNGB)

Two examples of limitations in axion model building:

Introduction	
000000	

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

ション ふゆ マ キャット マックシン

Conclusion 00

Axions: pseudo Nambu-Goldstone bosons (pNGB)

Two examples of limitations in axion model building:

• low masses are not automatically consistent with UV completions in a quantum theory of gravity

Introduction	A gauge theory with a pGB	SM couplings	Application: H
•000000	0000	000000	

Conclusion 00

ション ふゆ マ キャット マックタン

Axions: pseudo Nambu-Goldstone bosons (pNGB)

Two examples of limitations in axion model building:

- low masses are not automatically consistent with UV completions in a quantum theory of gravity
 - some axion models require intermediate scale $(\sim 10^{9-11} \text{ GeV})$ or super-Planckian dynamics

Introduction	A gauge theory with a pGB	SM couplings	Application: FDM	Conclusion
000000	0000	000000	00000	00

Mass range in axion models:

ション ふゆ く は く は く む く む く し く

Introduction $0 \bullet 00000$	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

Mass range in axion models:

Small masses: **need for a controlled explicit breaking** of the axionic symmetry

うして ふゆう ふほう ふほう ふしつ

Introduction $0 \bullet 00000$	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

Mass range in axion models:

Small masses: **need for a controlled explicit breaking** of the axionic symmetry

However: global symmetries expected to be broken by quantum gravity effects

うつう 山田 エル・エー・ 山田 うらう

Introduction 000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

Introduction 000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Famous gauge protection: NGB from extra dimensions \mathbf{NGB}

Introduction	A gauge theory with a pGB	SM couplings	Application: FDM	Conclusion
000000	0000	000000	00000	00

Famous gauge protection: NGB from extra dimensions

Example: 5d abelian gauge theory compactified on S_1/\mathbb{Z}_2 , with Dirichlet boundary conditions for A_{μ}

ション ふゆ マ キャット マックシン

Introduction 000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

Famous gauge protection: NGB from extra dimensions

Example: 5d abelian gauge theory compactified on S_1/\mathbb{Z}_2 , with Dirichlet boundary conditions for $A_{\mu} \rightarrow$ leaves in the spectrum a massless scalar (zero mode of A_5) with a shift symmetry

(日) (日) (日) (日) (日) (日) (日) (日)

000000 00000 000000	00000	

Famous gauge protection: NGB from extra dimensions

Example: 5d abelian gauge theory compactified on S_1/\mathbb{Z}_2 , with Dirichlet boundary conditions for $A_{\mu} \rightarrow$ leaves in the spectrum a massless scalar (zero mode of A_5) with a shift symmetry

Breaking of the shift symmetry: requires **non-local** suppressed effects

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	$\begin{array}{l} \text{Application: FDM} \\ \text{00000} \end{array}$	Conclusion 00

Axion decay constant range in axion models:

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \dots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	$\begin{array}{l} \text{Application: FDM} \\ \text{00000} \end{array}$	Conclusion 00

Axion decay constant range in axion models:

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \dots$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

QCD axion: $f_a \sim 10^{9-11}$ GeV Quintessence/inflation/relaxion: $f_a \gtrsim M_P$

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

Axion decay constant range in axion models:

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \dots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

QCD axion: $f_a \sim 10^{9-11}$ GeV Quintessence/inflation/relaxion: $f_a \gtrsim M_P$

 f_a naturally obtained from known scale?

Introduction 0000€00	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00
		1 1 11		
		kwork models	<u>5:</u>	

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Introduction
0000000

A gauge theory with a pGB 0000 SM couplings 000000 Application: FDM 00000

Conclusion 00

This work:

Use a clockwork-inspired gauge group to protect an axion, and study its phenomenology $\begin{array}{c} \mathrm{Introduction} \\ \mathrm{000000} \bullet \end{array}$

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000 Conclusion 00

Outline

A gauge theory with a pGB

SM couplings

Application: FDM

Introduction 0000000 A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Conclusion 00

A gauge theory with a pGB

Introduction	A gauge theory with a pGB $\bullet 000$	SM couplings	Application: FDM	Conclusion
0000000		000000	00000	00

A gauge theory: 4D UV-completion of a **deconstructed** abelian gauge theory on a linear dilaton background

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	A gauge theory with a pGB $\bullet 000$	SM couplings	Application: FDM	Conclusion
0000000		000000	00000	00

A gauge theory: 4D UV-completion of a **deconstructed** abelian gauge theory on a linear dilaton background

$$\frac{\phi_{0}}{(-q)} \underbrace{U(1)_{1}}_{(1,-q)} \underbrace{\psi_{1}}_{(1,-q)} \underbrace{\psi_{2}}_{(1,-q)} \underbrace{U(1)_{3}}_{(1,-q)} - - - \underbrace{U(1)_{N-1}}_{(1,-q)} \underbrace{\psi_{N-1}}_{(1,-q)} \underbrace{U(1)_{N}}_{(1)} \underbrace{\phi_{N}}_{(1)} \underbrace{\psi_{N}}_{(1)} \underbrace{\psi_{N}}$$

Ahmed & Dillon (2017), Coy Frigerio & Ibe (2017), Choi Im & Shin (2017)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

・ロト ・ 一下・ ・ ヨト ・ 日 ト

∋ 900

with one global accidental U(1): $\phi_k \to e^{iq^k \alpha} \phi_k$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{An gauge theory with a pGB} \\ \mbox{ooo} \end{array} & \begin{array}{c} \mbox{SM couplings} \\ \mbox{ooooo} \end{array} & \begin{array}{c} \mbox{Application: FDM} \\ \mbox{ooooo} \end{array} & \begin{array}{c} \mbox{Conclusion} \\ \mbox{ooooo} \end{array} & \begin{array}{c} \mbox{Conclusion} \end{array} \\ \end{array} \\ \end{array} \\ \hline \begin{array}{c} \begin{array}{c} \mbox{ψ_{0}} \\ \mbox{ψ_{0}} \\ \mbox{$(1)_{1}$} \end{array} \\ \end{array} \\ \hline \mbox{ψ_{0}} \\ \hline \mbox{$(1)_{1}$} \\ \mbox{$(1)_{1}$} \end{array} \\ \hline \mbox{$(1)_{1}$} \\ \mbox{$(1)_{1}$} \\ \mbox{$(1)_{1}$} \end{array} \\ \hline \mbox{$(1)_{1}$} \\ \hline \mbox{$(1)_{1}$} \\ \mbox{$(1)_{1}$} \end{array} \\ \hline \mbox{$(2)_{1}$} \\ \mbox{$(1)_{1}$} \\ \mbox{$(1)_{1}$} \end{array} \\ \hline \mbox{$(2)_{1}$} \\ \mbox{$(1)_{1}$} \\ \mbox{$(2)_{1}$} \\ \mbox{$(1)_{1}$} \\ \mbox{$(2)_{1}$} \\ \mbox{$(2)_{1}$} \\ \mbox{$(2)_{1}$} \\ \mbox{$(1)_{1}$} \\ \mbox{$(2)_{1}$} \\ \mbox{$($$

ション ふゆ マ キャット マックシン

with one global accidental U(1): $\phi_k \to e^{iq^k\alpha}\phi_k$

In the spectrum for a complete spontaneous breaking, **Goldstone boson** *a*:

$$a \sim \frac{1}{q^N f_0} \theta_0 + \frac{1}{q^{N-1} f_1} \theta_1 + \ldots + \frac{1}{f_N} \theta_N$$

$$\begin{array}{cccc} \begin{array}{c} \begin{array}{c} \mbox{An gauge theory with a pGB} & \mbox{SM couplings} & \mbox{Application: FDM} & \mbox{Conclusion} & \m$$

with one global accidental U(1): $\phi_k \to e^{iq^k \alpha} \phi_k$

In the spectrum for a complete spontaneous breaking, **Goldstone boson** a

 $a \sim \frac{1}{q^N f_0} \theta_0 + \frac{1}{q^{N-1} f_1} \theta_1 + \dots \rightarrow \text{Site-dependent couplings?}$

うして ふゆう ふほう ふほう ふしつ

with one global accidental U(1): $\phi_k \to e^{iq^k \alpha} \phi_k$

How much approximate? Gauge invariant operators:

$$|\phi_k|^2$$
 and $\phi_0 \phi_1^q \dots \phi_N^{q^N}$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

 \rightarrow exponential increase of the order of the breaking operators with q and N

Introduction 0000000 A gauge theory with a pGB $_{\rm OOOO}$

 $\underset{000000}{\mathrm{SM \ couplings}}$

Application: FDM 00000 Conclusion 00

SM couplings

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへの

Introduction	A gauge theory with a pGB 0000	SM couplings	Application: FDM	Conclusion
0000000		•00000	00000	00

Couplings to SM fields:

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{ig_{a,\text{EDM}}}{f_a} a \overline{N} \gamma_{\mu\nu} \gamma^5 N F^{\mu\nu} \\ + \frac{g_{aNN}}{f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N + \frac{g_{aee}}{f_a} \partial_\mu a \overline{e} \gamma^\mu \gamma^5 e$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨー

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ Ξ - のへで

KSVZ model:

$$\mathcal{L} \supset \phi \overline{Q_L} Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

KSVZ model:

$$\mathcal{L} \supset \phi \overline{Q_L} Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gauge-anomalous now. Need more fermions:

$$\mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + h.c.$$

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{occc} \mbox{occc} \mbox{occc} \mbox{M gauge theory with a pGB}\\ \mbox{occc} \mbox{SM couplings}\\ \mbox{occc} \mbox{occc} \mbox{M polication: FDM}\\ \mbox{occc} \mbo$

KSVZ model:

$$\mathcal{L} \supset \phi \overline{Q_L} Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

Gauge-anomalous now. Need more fermions:

$$\mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + h.c.$$

$$\xrightarrow{U(1)_1 \text{ anom.}} \mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + \sum_{i=1}^q \phi_1 \overline{Q_{L,1}^i} Q_{R,1}^i + h.c.$$

KSVZ model:

. . .

$$\mathcal{L} \supset \phi \overline{Q_L} Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F}$$

Gauge-anomalous now. Need more fermions:

$$\begin{aligned} \mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + h.c. \\ \xrightarrow{U(1)_1 \text{ anom.}} \mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + \sum_{i=1}^q \phi_1 \overline{Q_{L,1}^i} Q_{R,1}^i + h.c. \\ \xrightarrow{U(1)_2 \text{ anom.}} \mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + \sum_{i=1}^q \phi_1 \overline{Q_{L,1}^i} Q_{R,1}^i + \sum_{i=1}^{q^2} \phi_2 \overline{Q_{L,2}^i} Q_{R,2}^i + h.c. \\ \xrightarrow{U(1)_3 \text{ anom.}} \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

KSVZ model:

$$\mathcal{L} \supset \phi \overline{Q_L} Q_R + h.c. \xrightarrow{Q \text{ triangle loop}} \frac{a}{f} F \tilde{F}$$

Gauge-anomalous now. Need more fermions:

$$\mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + h.c.$$

$$\xrightarrow{U(1)_1 \text{ anom.}} \mathcal{L} \supset \phi_0 \overline{Q_{L,0}} Q_{R,0} + \sum_{i=1}^q \phi_1 \overline{Q_{L,1}^i} Q_{R,1}^i + h.c.$$

 $U(1)_2$ anom.

. . .

$$\xrightarrow{\text{triangle loops}} \frac{\sqrt{1+q^2+\ldots+q^{2N}}}{f} a F \tilde{F}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

$$\begin{array}{ccc} \begin{array}{c} \mbox{Introduction} & \mbox{A gauge theory with a pGB} & \mbox{SM couplings} & \mbox{Application: FDM} & \mbox{Conclusion} & \mbox{coord} & \$$

$$f_{\rm eff} \sim \frac{f}{q^N}$$

(ロ)、(型)、(E)、(E)、 E、 のQの

$$f_{\rm eff} \sim \frac{f}{q^N}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Still requires $\sim q^N$ additional fermions

$$\begin{array}{ccc} \begin{array}{c} \mbox{Introduction} & \mbox{A gauge theory with a pGB} & \mbox{SM couplings} & \mbox{Application: FDM} & \mbox{Conclusion} & \mbox{$$

$$f_{\rm eff} \sim \frac{f}{q^N}$$

Still requires $\sim q^N$ additional fermions

Ex: to get $f_{\rm eff} \sim 10^{12}$ GeV from $f \sim M_P$, needs 10^6 fermions (at the Planck scale)

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

$$f_{\rm eff} \sim \frac{f}{q^N}$$

Still requires $\sim q^N$ additional fermions

Ex: to get $f_{\rm eff} \sim 10^{12}$ GeV from $f \sim M_P$, needs 10^6 fermions (at the Planck scale) VS 10^{12} if q = 1

うして ふゆう ふほう ふほう ふしつ

$$f_{\rm eff} \sim \frac{f}{q^N}$$

Still requires $\sim q^N$ additional fermions

Ex: to get $f_{\rm eff} \sim 10^{12}$ GeV from $f \sim M_P$, needs 10^6 fermions (at the Planck scale) VS 10^{12} if q = 1

Due to the number of additional fermions AND the high accidental global charges:

$$f_{\rm eff} = \frac{f}{\sqrt{\sum_{\rm fermions} (\rm charges)}} \sim \frac{f}{\sqrt{q^N q^N}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへの

Example: coupling to the first SM generation

$$\mathcal{L} \supset -\frac{1}{M_P} \Big(\overline{u_R} H \phi_i Y_u Q_L + \overline{d_R} (H\phi_i)^* Y_d Q_L + \overline{e_R} (H\phi_i)^* Y_e L_L \Big) + h.c.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: coupling to the first SM generation

$$\mathcal{L} \supset -\frac{1}{M_P} \Big(\overline{u_R} H \phi_i Y_u Q_L + \overline{d_R} (H\phi_i)^* Y_d Q_L + \overline{e_R} (H\phi_i)^* Y_e L_L \Big) + h.c.$$

$$\xrightarrow{\text{chiral redef.}} \mathcal{L} \supset \frac{-iq^i \partial_\mu a}{2\sqrt{1+\ldots+q^{2N}} f} (\overline{u}\gamma_5 \gamma^\mu u + \overline{d}\gamma_5 \gamma^\mu d + \overline{e}\gamma_5 \gamma^\mu e)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: coupling to the first SM generation

$$\mathcal{L} \supset -\frac{1}{M_P} \Big(\overline{u_R} H \phi_i Y_u Q_L + \overline{d_R} (H\phi_i)^* Y_d Q_L + \overline{e_R} (H\phi_i)^* Y_e L_L \Big) + h.c.$$

$$\xrightarrow{\text{chiral redef.}} \mathcal{L} \supset \frac{-iq^i \partial_\mu a}{2\sqrt{1+\ldots+q^{2N}f}} (\overline{u}\gamma_5 \gamma^\mu u + \overline{d}\gamma_5 \gamma^\mu d + \overline{e}\gamma_5 \gamma^\mu e)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Site-dependent coupling to the spins derived in minimal setup

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} aF_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a}\partial_{\mu}a\overline{N}\gamma^{\mu}\gamma^5N + \dots$$

Axion field
$$a = \frac{\theta_0 + q\theta_1 + \dots + q^N \theta_N}{\sqrt{1 + q^2 + \dots + q^{2N}}}$$

In the effective theory:

$$\frac{\sqrt{1+q^2+\ldots+q^{2N}}}{f}aF\tilde{F} \qquad \frac{q^i\partial_{\mu}a}{\sqrt{1+q^2+\ldots+q^{2N}f}}\overline{N}\gamma^{\mu}\gamma^5N$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{g_{aNN}}{f_a} \partial_{\mu} a \overline{N} \gamma^{\mu} \gamma^5 N + \dots$$

Axion field
$$a = \frac{\theta_0 + q\theta_1 + \dots + q^N \theta_N}{\sqrt{1 + q^2 + \dots + q^{2N}}}$$

In the effective theory:

$$\begin{array}{c|c} \sqrt{1+q^2+\ldots+q^{2N}} & aF\tilde{F} \\ \hline \hline \frac{q^i\partial_\mu a}{\sqrt{1+q^2+\ldots+q^{2N}f}} \overline{N}\gamma^\mu\gamma^5 N \\ \end{array} \\ \text{Scales:} \quad f \quad \quad \frac{f_a}{g_{a\gamma\gamma}} \sim \frac{f}{q^N} \qquad \quad \quad \frac{f_a}{g_{aee}} \sim \frac{f}{q^{i-N}} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

イロト イロト イヨト イヨト 三日

Conclusion 00

Application: FDM

A gauge theory with a pGB 0000

SM couplings 000000 Conclusion 00

For an ALP dark matter candidate:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

A gauge theory with a pGE 0000 SM couplings 000000 Application: FDM •0000

Conclusion 00

For an ALP dark matter candidate:

Masses can be as low as $m\sim 10^{-22}$ eV ("fuzzy" dark matter candidate)

Can be perturbative or non-perturbative

A gauge theory with a pGB 0000 SM couplings 000000 Application: FDM •0000

ション ふゆ マ キャット マックシン

Conclusion 00

For an ALP dark matter candidate:

Masses can be as low as $m\sim 10^{-22}$ eV ("fuzzy" dark matter candidate)

Can be perturbative or non-perturbative

Focus here on **perturbative gravitational origin** and on **misalignment mechanism** (with pre-inflationnary breaking):

$$V = -\frac{\phi_0 \phi_1^q \dots \phi_N^{q^N}}{M_P^{1+q+\dots+q^N-4}} \supset -\left(\frac{f}{M_P}\right)^{1+q+\dots q^N} M_P^4 \cos\left(\frac{a}{f_a}\right)$$

and
$$< a_{\text{init}} \ge \text{random}$$

Introduction	A gauge theory with a pGB 0000	SM couplings	Application: FDM	Conclusion
0000000		000000	00000	00

 $\Omega_a h^2 = 0.12$ when:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

A gauge theory with a pGB 0000 SM couplings 000000 Application: FDM 00000

Conclusion 00

Detection of spin precession (with $\frac{\partial_{\mu}a}{f_a}\overline{N}\gamma^{\mu}\gamma^5 N$):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A gauge theory with a pGB 0000 SM couplings

Application: FDM 00000

Conclusion 00

Detection of spin precession (with $\frac{\partial_{\mu}a}{f_a}\overline{N}\gamma^{\mu}\gamma^5 N$):

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

IntroductionA gauge theory with a pGBSM couplingsApplication: FDMConclusion00000000000000000000000000

Detection of spin precession (with $\frac{\partial_{\mu}a}{f_a}\overline{N}\gamma^{\mu}\gamma^5 N$): Coupled at site N

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

IntroductionA gauge theory with a pGBSM couplingsApplication: FDMConclusion000000000000000000000000000000000

Detection of spin precession (with $\frac{\partial_{\mu}a}{f_a}\overline{N}\gamma^{\mu}\gamma^5 N$): Coupled at site 0

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Intr	odı	lction	L
000		00	

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000 $\operatorname{Conclusion}_{\circ\circ}$

Conclusion

▲□▶ ▲圖▶ ▲ 三▶ ▲ 三▶ ● 三● ● ○ Q @

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion $\bullet 0$

We considered a **pGB protected against (gravitational) breaking effects**. Its mass is easily very small, even with few additional gauge groups.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion $\bullet 0$

We considered a **pGB protected against (gravitational) breaking effects**. Its mass is easily very small, even with few additional gauge groups.

It can have **all usual axion couplings**, associated to scales which display the clockwork charges of the scalars. While axion-spin couplings are generated in minimal setups, anomalous couplings to gauge fields require an additional fermion sector.

うして ふゆう ふほう ふほう ふしつ

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion $\bullet 0$

We considered a **pGB protected against (gravitational) breaking effects**. Its mass is easily very small, even with few additional gauge groups.

It can have **all usual axion couplings**, associated to scales which display the clockwork charges of the scalars. While axion-spin couplings are generated in minimal setups, anomalous couplings to gauge fields require an additional fermion sector.

In the minimal setup, the (unavoidable) gravity contribution is sufficient to provide the correct DM density, and spin-precession-based searches can detect such a particle.

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000 Conclusion 0

Thank you!

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Intr	odı	lction	L
000		00	

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000 Conclusion 00

Backups

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQC

A gauge theory with a pGB $_{\rm OOOO}$

SM couplings 000000 Application: FDM 00000

うして ふゆう ふほう ふほう ふしつ

Conclusion 00

Example of a Peccei-Quinn symmetry:

Peccei-Quinn symmetry:

Explains why the \mathcal{QP} " θ -term" $\mathcal{L}_{\text{QCD}} \supset \frac{\theta_{\text{QCD}}}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$ verifies $\theta_{\text{QCD}} < 10^{-10}$

Postulates a global symmetry with a $SU(3)^2 \times U(1)_{PQ}$ anomaly \rightarrow makes $\theta_{\rm QCD}$ dynamical (axion) and stabilizes it at $\theta_{\rm QCD} = 0$

Introduction	A gauge theory with a pGB 0000	SM couplings	Application: FDM	Conclusion
0000000		000000	00000	00

PQ symmetry: Global symmetry with a
$$SU(3)^2 \times U(1)_{PQ}$$

anomaly + axion $\rightarrow \theta_{\text{QCD}} = 0$

Specific realization: $\mathbf{KSVZ} \ \mathbf{model} \ \mathbf{with}$

 $\mathcal{L}_{PQ} \supset \phi \overline{Q_L} Q_R + h.c. - V(|\phi|^2), \ \phi \xrightarrow{U(1)_{PQ}} e^{i\alpha} \phi \ \text{and} \ \phi = \frac{f+r}{\sqrt{2}} e^{i\frac{a}{f}}.$ Then:

QCD anom. + instantons
$$\rightarrow \mathcal{L} \supset m_{\pi}^2 f_{\pi}^2 \frac{\sqrt{m_u m_d}}{m_u + m_d} \cos\left(\frac{a}{f} - \theta_{\text{QCD}}\right)$$

Possible correction: $\mathcal{L}_{\mathcal{PQ}} \supset \frac{\phi^n}{M_P^{n-4}} + h.c. \rightarrow \text{destabilizes}$ $\theta < 10^{-10} \text{ if } n < 10 \text{ (if } f \gtrsim 10^9 \text{ GeV}).$ Indeed:

$$\frac{\phi^n}{M_P^{n-4}} \operatorname{term} \to \mathcal{L} \supset \left(\frac{f}{\sqrt{2}M_P}\right)^n M_P^4 \cos\left(\frac{na}{f}\right)$$

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Conclusion 00

Protection of global symmetries: make them accidental.

- Ex: B, L in the renormalizable standard model lagrangian
- $U(1)_{PQ}$ protection: Barr and Seckel (1992)

$$\mathcal{L}_{\text{bococo}} = \frac{A \text{ gauge theory with a pGB}}{\cos \phi} = \frac{SM \text{ couplings}}{\cos \phi} = \frac{A \text{ pplication: FDM}}{\cos \phi} = \frac{C \text{ occ}}{\cos \phi} = \frac{C \text{ conclusion}}{\cos \phi} = \frac{1}{2} \sum_{i=1}^{N} \frac{\phi_{1}}{(1, -q)} \underbrace{U(1)_{2}}_{(1, -q)} \underbrace{U(1)_{3}}_{(1, -q)} = - - - \underbrace{U(1)_{N-1}}_{(1, -q)} \underbrace{\psi_{N-1}}_{(1, -q)} \underbrace{U(1)_{N}}_{(1)} \underbrace{\phi_{N}}_{(1)} \underbrace{\psi_{N}}_{(1)} \underbrace$$

with one global accidental U(1): $\phi_k \to e^{iq^k \alpha} \phi_k$

Gravitational breaking under control:

$$\mathcal{L} \supset \frac{\phi_0 \phi_1^q \dots \phi_N^{q^N}}{M_P^{1+\dots-4}} \to \left[m_a^{(\text{grav})} = \left(\frac{f}{\sqrt{2}M_P}\right)^{\frac{q+\dots+q^N-1}{2}} \sqrt{1+q^2+\dots+q^{2N}} M_P \right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	A gauge theory with a pGB	SM couplings	Application: FDM	Conclusion
0000000	0000	000000	00000	00

Mass suppression with few additional gauge groups:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Number of fermions $\sim q^N$: growing with protection quality. General feature:

0000000 0000 00000 00000 00	IntroductionA gauge theory with a pGBSM couplingsApplication: FDMO0000000000000000000000000000000
-----------------------------	---

For a QCD axion:

Protection efficient if $m_a^{(\text{grav})} < 10^{-5} \left(m_a^{(\text{QCD})} \sim \frac{m_\pi f_\pi}{2f_a} \right)$ (with f_a defined by the axion-gluons coupling: $\mathcal{L} \supset \frac{a}{f_a} G \tilde{G}$)

In our setup:

$$f_a = \frac{f}{\sqrt{1+q^2+\ldots+q^{2N}}}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

A gauge theory with a pGB 0000

SM couplings

Application: FDM 00000 Conclusion 00

$$\theta_{\text{QCD}} < 10^{-10} \text{ if:} \\ \left[m_a^{(\text{QCD})} \sim \frac{m_\pi f_\pi}{2f_a} \right] > 10^5 \left[m_a^{(\text{grav})} \sim \left(\frac{f}{M_P}\right)^{\frac{q+\ldots+q^N-1}{2}} \frac{f}{f_a} M_P \right]$$

996

Introduction 0000000	A gauge theory with a pGB 0000	SM couplings 000000	Application: FDM 00000	Conclusion 00

Protected QCD axion with $f \sim 10^{11}$ GeV and $q = 3, N = 2 \rightarrow 13$ additional colored Dirac fermions (+13 additional singlet Dirac fermions)

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

No Landau pole for QCD below the Planck mass

A gauge theory with a pGB 0000

SM couplings 000000 Application: FDM 00000

Conclusion 00

Stability of the DM ALP's?

No anomaly: no ALP-photon conversion via usual $\mathcal{L} \supset \frac{a}{f_a} F \tilde{F}$

Instead: derivative interactions + tiny mass \rightarrow long lifetime

Example: coupling to a heavy anomaly-free set of electrically charged fermions:

$$\mathcal{L} \supset y_1 \phi_i \overline{\psi_{R,1}} \psi_{L,1} + y_2 \phi_i \overline{\psi_{L,2}} \psi_{R,2} + h.c. \ .$$

$$\xrightarrow{\text{fermions integr.}} \mathcal{L}_{eff} \supset \frac{e^2}{48\pi^2 q^i f} \Big(\frac{1}{m_1^2} - \frac{1}{m_2^2} \Big) (\Box a F \tilde{F} - \frac{1}{2} \partial_\mu a F_{\nu\eta} \partial^\eta \tilde{F}^{\mu\nu})$$

Lifetimes for the FDM: $\sim 10^{300}$ s