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Old subject, most  (all ?) results known in the literature. 
 
Many people (also in the audience) contributed to the subject: 
 
J.E. Kim, H.P. Nilles, K. Choi, T.Banks, M.Dine, A. Ringwald, Z.Lalak,  
S. Pokorski, P.Svrcek, E.Witten… 
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1)    Anomalous U(1) and gaugino        
condensation 
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( 1955-2017),  E.D., 1996; Arkani-Hamed, Dine,Martin, 1998,…) 

Abelian gauge factors in string theory are often « anomalous ». 
 
 
Gauge group    G = GSM ⇥Gh ⇥ U(1)X

Low-energy/massless spectrum has triangle gauge anomalies 

Ca = 1
4⇡2Tr(QXQ2

a) 6= 0
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But the string models are consistent due to the 4d version  
of the Green-Schwarz (GS) mechanism. 
  In what follows heterotic notation and universal GS 
mechanism. Type II/type I version similar and more flexible 
(non-universal).   
 
Tree-level effective action (heterotic) 
 

dynamical supersymmetry breaking through gaugino condensation.

To be more specific, the relevant couplings of the dilaton superfield S

to the gauge superfields Va, VX (of respective gauge invariant field strengths

W α
a ,W α

X) of the groups Ga and U(1)X read in the global limit:

LS,V = −
∫

d4θ ln(S + S+ − δGSVX)

+
∫

d2θ

[

S

4
(
∑

a

kaTrW α
a Waα + kXTrW α

XWXα) + h.c.

]

(1.1)

where δGS is the Green-Schwarz coefficient and ka (kX) is the Kac-Moody

level of the group Ga (U(1)X ). Under a U(1)X gauge transformation (AX
µ →

AX
µ + ∂µα), S is shifted as

S → S +
i

2
δGSα(x). (1.2)

The complete Lagrangian is invariant provided the mixed U(1)X [Ga]2 anomaly

coefficients Ca satisfy the condition

δGS =
Ca

ka
=

CX

kX
=

Cg

kg
, (1.3)

where Cg is the mixed gravitational anomaly proportional to TrX. Indeed

a string computation yields

δGS =
1

192π2
TrX. (1.4)

The mixing between S and VX in the Kähler potential (1.1) gives rise to a

D-term in the scalar potential:

VD =
g2
X

2

(

∑

A

XAKAφA +
1

4
kXg2

XδGSM2
P

)2

, (1.5)

where MP is the Planck scale,

kXg2
X =

2

S + S+
, (1.6)

and KA is the derivative of the Kähler potential K with respect to the

field φA. The presence of the Fayet-Iliopoulos term induced by the U(1)X

2
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is not gauge invariant and cancels the one-loop triangle 
gauge anomalies. Under a                  gauge transformation, 
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Suppose there is a gaugino condensation in a hidden sector, 
for concreteness SQCD with gauge group 

Gh = SU(Nc) and                          quark flavors     Nf < Nc

The mixed gauge anomaly                                       is 

2 Gauge group G = SU(Nc) × U(1)X with Nf ≤ Nc

flavors

The model that we consider is an extension of SUSY-QCD based on the

gauge group SU(Nc) with Nf ≤ Nc flavors of “quarks” Qi of U(1)X charge

q in the fundamental of SU(Nc) and “antiquarks” Q̃ı̄ of charge q̃ in the

antifundamental of SU(Nc).

Since we want to avoid SU(Nc) breaking in the U(1)X flat direction (1.5),

we require that the charges q and q̃ are positive (this is in fact not restrictive:

see the comment in the footnote below). We then need at least one field of

negative charge in order to cancel the D-term (1.5). For simplicity we will

introduce a single field φ of U(1)X charge normalized to −1.

The classical lagrangian compatible with the symmetries is L = Lkin +

Lcouplings, where we assume a flat Kähler potential for the matter fields:

Lkin =
∫

d4θ
[

Q+e2qVX+VN Q + Q̃e2q̃VX−VN Q̃+ + φ+e−2VX φ
]

+ LS,V (2.8)

and

Lcouplings =
∫

d2θ(
φ

MP
)q+q̃mı̄

iQ
iQ̃ı̄ + h.c. . (2.9)

As stressed in the introduction, the model can be studied per se or be

used as an illustrative example of a hidden sector where supersymmetry is

dynamically broken in presence of an anomalous U(1). In the former case,

MP is the scale of the underlying non-anomalous theory (say the mass of

some heavy fermions we have integrated upon), in the latter case it is the

Planck scale.

The mixed anomaly U(1)X [SU(Nc)]2 which will fix, through (1.3), all

the mixed anomalies in the model is given by

CN =
1

4π2
Nf (q + q̃) = kNδGS . (2.10)

We thus require q + q̃ > 0, which in turn justifies the presence of the super-

potential term (2.9).3

3Alternatively, since from (2.10) q + q̃ and δGS have the same sign, we would still avoid

4
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4

Q, Q̃

where             are                    charges of     q, q̃ U(1)X Q, Q̃
Degrees  of freedom below the dynamical condensation scale 
are the « mesons »     

⇤

One may note, using (1.2), that the following combination

f = kNS −
Nf

8π2
(q + q̃) ln

φ

MP
(2.11)

is invariant under U(1)X . Such a gauge kinetic function would be obtained

by integrating over the hidden matter degrees of freedom, assuming unbro-

ken supersymmetry. It could then be used to determine the gaugino masses.

We will see however that supersymmetry is broken, which makes matters

less straightforward.

The two scales present in the problem are:

- the scale at which the anomalous U(1)X symmetry is broken which is

set by

ξ =
1

2
k1/2

X gXδ1/2
GS MP . (2.12)

- the scale at which the gauge group SU(Nc) enters in a strong coupling

regime:

Λ = MP e−8π2kN S/(3Nc−Nf ), (2.13)

where we have used (1.7) with b0 = (3Nc − Nf )/(16π2). Notice that, by

using the transformation (1.2), we find that the dynamical scale Λ has a

charge qΛ = Nf (q + q̃)/(3Nc − Nf ).

From now on, we will suppose that Λ << ξ. We could write the effective

theory below the scale ξ and study within this theory the strongly coupled

SU(Nc) theory. It is however simpler to keep the complete theory down to

the scale Λ since most of the nontrivial effects we will obtain result from an

interplay between the scales Λ and ξ.

Below the scale Λ the appropriate degrees of freedom for Nf < Nc are

the field φ and the mesons M i
ı̄ = QiQ̃ı̄. The effective superpotential is fixed

uniquely by the global symmetries [10, 11] as follows

W = (Nc − Nf )
Λ

3Nc−Nf
Nc−Nf

(detM)
1

Nc−Nf

+ (
φ

MP
)q+q̃mı̄

iM
i
ı̄ (2.14)

SU(Nc) breaking in the U(1)X flat direction with q + q̃ < 0. The field φ which cancels

the D-term would then be chosen with charge +1.

5
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The dynamical scale         is not gauge invariant ⇤

One may note, using (1.2), that the following combination
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5

However the effective action  

is gauge invariant precisely due to the GS conditions.  

Nonperturbative (Afleck-Dine-Seiberg) term 
Quark « mass » terms 
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and is seen to be automatically U(1)X invariant. Similarly, the gaugino

condensation scale

< λλ > =
(

Λ3Nc−Nf /detM
)

1
Nc−Nf (2.15)

is also U(1)X gauge invariant, as it should be.

The gauge contributions to the scalar potential can be computed along

the SU(Nc) classical flat directions. The result is

VD =
g2
X

2

[

(q + q̃)Tr(M+M)1/2 − φ+φ + ξ2
]2

. (2.16)

The auxiliary fields, computed from (2.14) and (2.16) are

F̄S+ = −
8π2

MP
kN (S + S+)2

Λ
3Nc−Nf
Nc−Nf

(detM)
1

Nc−Nf

(2.17)

and

(F̄M+)ı̄
i = 2

⎡

⎢

⎣
−(M−1)

ȷ̄
i

Λ
3Nc−Nf
Nc−Nf

(detM)
1

Nc−Nf

+ (
φ

MP
)q+q̃mȷ̄

i

⎤

⎥

⎦
[(M+M)1/2]ı̄ȷ̄,

F̄φ+ =
q + q̃

MP
(

φ

MP
)q+q̃−1Tr(mM) ,

DX = g2
X

[

(q + q̃)Tr(M+M)1/2 − φ+φ + ξ2
]

. (2.18)

In the limit S → ∞, the scale Λ vanishes and we can choose M i
ı̄ = 0

and φ = ξ to cancel all these auxiliary fields. This is the usual global su-

persymmetry minimum at infinite values of S which leads to the dilaton

stabilization problem. We will assume that the dilaton is stabilized at some

finite value S0, possibly through some extra S-dependent term in the super-

potential (we will therefore refrain from using (2.17)), and that FS(S0) = 0.

Indeed we are going to show that, even in this unfavorable case (supersym-

metry conserving groundstate for S), the other fields present in the theory

yield supersymmetry breaking because of the anomalous behavior of U(1)X .

From now on, we will therefore restrict our attention to the auxiliary fields

(2.18) associated with M i
ı̄ , φ and the U(1)X gauge degree of freedom.

6
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6

with ⇠2 = �GS
s+s̄ > 0
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*Assume in what follows that S is stabilized.     

Suppose one « integrate-out » the hidden sector fields*. 
 One gets, adding also a constant  
 
 
 Weff = W0 + aM3

P (
�

MP
)

Nf (q+q̃)

Nc e�
8⇡2kNS

Nc

W0

Hidden sector produced a « fractional » instantonic effect, 
which respect the gauge invariance. Such terms were 
computed  explicitly, both from gauge theory (fractional) and 
stringy instantons in type II/I strings, with S              
geometric moduli   
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           2)    The axions 

There are three potential axions in the model :        

where                                                       S = s+ iaS

M = M0 I ei
q

2
NfM0

aM

One of them is unphysical: the goldstone absorbed by the 
massive  « anomalous » gauge field 

aS , a� , aM

� = V e
ia�p
2V
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aX ⇠ �GSp
2s
aS + 2

p
2V a� � (q + q̃)

p
2NfM0aM

The two physical ones correspond to the gauge invariant 
combinations 
 
e�8⇡2kNS

detM
and ( �

MP
)q+q̃M

One of them is  heavy, gets a mass from the hidden sector 
dynamics: 
 
ah ⇠ 1

Nc�Nf
(8
p
2⇡2kNsaS +Nc

q
2

NfM0
aM ) + q+q̃p

2V
a�
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The second axion in massless in global SUSY and is a 
potential QCD axion or ALP.   
 
The resulting PQ symmetry is accidental (…Svrcek,Witten) 
 
 In the limit                            it is given by 
 
 
 
 
It corresponds precisely to the gauge-invariant combination 
appearing in the fractional instanton effect.  
  It has no component  on the hadronic axion          

V << 1

al ⇠ 8
p
2kNsaS � Nf (q+q̃)p

2V
a�

aM
Conclusion: one can « integrate-out » mesons and work only  
with       and    � S
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One can introduce a small angle      ,   ✓

tan ✓ = 4sV
�GS

such that aX = cos ✓aS + sin ✓a�
al = � sin ✓aS + cos ✓a�

In the unitary gauge                        and therefore  aX = 0

aS = � sin ✓ al a� = cos ✓ al, 

Supergravity couplings  generate an explicit breaking of the 
Peccei-Quinn symmetry and an axion potential 
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where                                                     and 
 
 

✏ = V
MP

<< 1

fl ' 2
p
2⇡Nc

Nf (q+q̃)V

V ⇠ m3/2M
3
P ✏

Nf (q+q̃)

Nc e�
8⇡2kNs

Nc cos( 2⇡al
fl

)

For heterotic string, typically                       GeV  
Type II orientifolds: S replaced by : 
 
Kahler moduli           ,                           
                    
Twisted moduli  

fl ⇠ 1016

Ti

M↵ V 2 = ⇠2 ⇠ �↵M↵

V 2 = ⇠2 ⇠
P

i
�i

Ti+T̄i
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In these cases, it is possible to obtain 

fl ⇠ V << MP

The light axion can solve the strong CP problem if   

§  Other ways to naturally get                          : large xtra dims or  quiver 
models; see  parallel talk of Quentin (with S. Pokorski) 

m3/2h��i < 10�5⇤4
QCD

fl << MP

where h��i = M3
P (

V
MP

)
Nf (q+q̃)

Nc e�
8⇡2kNS

Nc

Ex:                                                          ,                h��i = 1 GeV 3 m3/2 = 10 KeV

Stringy instantons can lead easier to smaller axion masses 
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 3)    Axion low-energy couplings 
After integrating-out all fermions, the gauge coupling should  
be manifestly gauge invariant 

fa = kaS � Ca ln
�

MP

axion coupling to gluons completely determined  

C3
V a�GG̃ k3�GS

V alGG̃

Axion couplings to fermions  proportional to their   
                charges U(1)X
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qi
V @mal ̄i�m�5 i

§  Phenomenologically most interesting case is for Froggatt-
Nielsen type flavor models with anomalous                   

         = flavon,  �
U(1)X

V = 0.1� 0.01 MP

In this case, charges         are related to fermion masses: 
first generation fermions have the largest charges/couplings: 
flavorful axion models.  
 
In this case, axion decay constant is  larger than the standard 
« axion window »  
 
 
  However upper bound not as solid as the  lowest bound.   

qi

1 Introduction

The QCD axion is a pseudo Nambu-Goldstone boson associated with the spontaneous

breakdown of a global Peccei-Quinn symmetry [1–3]. Interestingly, the QCD axion

not only solves the strong CP problem, but also explains dark matter as it is copiously

producded by the initial misalignment mechanism in the early Universe [4–6].

The axion is massless at high temperatures, but it acquires a mass from non-

perturbative e↵ects of QCD at low energy, solving the strong CP problem. In the

early Universe, therefore, there is no reason for the QCD axion to sit exactly at the

CP conserving minimum, and it is usually assumed that the initial position, a⇤/fa, is

of order of unity, where fa is the axion decay constant. Then, the QCD axion starts

to oscillate about the CP conserving minimum around the QCD phase transition,

and the axion coherent oscillations become dark matter. See e.g. [7–11] for recent

reviews.

The so-called classical axion window is given by

4⇥ 108 GeV . fa . 1012 GeV, (1)

where the upper bound is due to the axion abundance described above [4–6], and

the lower is due to the neutrino burst duration of SN1987A [12–14]. Therefore, if

the axion decay constant is of order the GUT scale or string scale, fa ⇠ 1016�17GeV,

the axion abundance exceeds the observed dark matter abundance unless the initial

position a⇤/fa is fine-tuned to be much smaller than unity.

There are several ways to relax the upper bound of the classical axion window.

For instance, the axion abundance can be diluted by the late-time entropy production

after the QCD phase transition [5,18–21]. A small value of the initial misalignment

angle may be selected in the multiverse based on the anthropic principle [15–17].

Alternatively, the axion can acquire a time-dependent mass through the Witten

e↵ect, if it is coupled to hidden monopoles [22,23]. If the e↵ect is sizable, the axion

follows the time-dependent minimum adiabatically, and no particle production takes

place at the time of the QCD phase transition, suppressing the final abundance.

Also, if there is a resonant mixing with axion-like particles, the axion abundance can

be suppressed by the mass ratio [24–26]. More recently, it was pointed out that, if

the axion has a large coupling to massless hidden photons, the axion energy density

is dissipated to hidden photons through tachyonic resonance, and the abundance can

be suppressed by O(100) [28] (see also Ref. [29]).

1
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For                            these are not flavor models and 
it is increasingly difficult to charge SM fields under               
(Yukawas)       
 
Anomaly cancelation in this case require other (KSVZ-like) 
heavy colored fermions, which generate the couplings to 
gauge fields. 

U(1)X
V << 10�2



§  Gauge instantons/gaugino condensation or stringy instantons + 
SUGRA generate small axion masses. 
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§  GUT scale axion decay constants go together with axiflavor 

models : axion couplings correlated to fermion masses and 
couplings 

§  Intermediate scale axion decays possible, correlated with 
small values of the FI terms after moduli stabilisation. 

 

  

Conclusions  
§  Effective string models with anomalous U(1)  have natural 

candidates for  light axions.   



       Thank  you 
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