Moduli and obstructions of $\mathcal{N}=1$ heterotic backgrounds

Anthony Ashmore

University of Oxford
1806.08367 w/
X. de la Ossa, R. Minasian,
C. Strickland-Constable, E. Svanes

String Pheno 2018

Motivation

Calabi-Yau compactifications have large numbers of moduli
Move away from Calabi-Yau and allow non-zero flux

- Most moduli can be stabilised
- Internal spaces are non-Kähler

Can we say anything about general heterotic compactifications?

Goal:

Understanding of moduli spaces

Heterotic string

Work in heterotic string at $\mathcal{O}\left(\alpha^{\prime}\right)$
Want Minkowski compactifications that preserve minimal supersymmetry

$$
M_{10}=\mathbb{R}^{1,3} \times X
$$

X is compact 6d space with vector bundle V

- Metric g
- Dilaton ϕ
- Gauge fields A with $G \subseteq \mathrm{E}_{8} \times \mathrm{E}_{8}$
- 3-form flux H

Hull-Strominger system

General 4d Minkowski solutions with $\mathcal{N}=1$ are given by the "Hull-Strominger system" [strominger '86, Hull '86]

Hull-Strominger system

General 4d Minkowski solutions with $\mathcal{N}=1$ are given by the "Hull-Strominger system" [strominger '86, Hull '86]
X is complex with an $\operatorname{SU}(3)$ structure and a conformally balanced metric

$$
\begin{gathered}
\omega \wedge \Omega=0, \quad \omega^{3} \propto|\Omega|^{2}, \\
\mathrm{~d} \Omega=0, \quad \mathrm{~d}\left(\mathrm{e}^{-2 \phi} \omega \wedge \omega\right)=0
\end{gathered}
$$

Hull-Strominger system

General 4d Minkowski solutions with $\mathcal{N}=1$ are given by the "Hull-Strominger system" [strominger '86, Hull '86]
X is complex with an $\operatorname{SU}(3)$ structure and a conformally balanced metric

$$
\begin{gathered}
\omega \wedge \Omega=0, \quad \omega^{3} \propto|\Omega|^{2}, \\
\mathrm{~d} \Omega=0, \quad \mathrm{~d}\left(\mathrm{e}^{-2 \phi} \omega \wedge \omega\right)=0
\end{gathered}
$$

V and $T X$ are polystable holomorphic bundles

$$
F_{(0,2)}=0, \quad F \wedge \omega \wedge \omega=0
$$

Hull-Strominger system

General 4d Minkowski solutions with $\mathcal{N}=1$ are given by the "Hull-Strominger system" [strominger '86, Hull '86]
X is complex with an $\operatorname{SU}(3)$ structure and a conformally balanced metric

$$
\begin{gathered}
\omega \wedge \Omega=0, \quad \omega^{3} \propto|\Omega|^{2}, \\
\mathrm{~d} \Omega=0, \quad \mathrm{~d}\left(\mathrm{e}^{-2 \phi} \omega \wedge \omega\right)=0
\end{gathered}
$$

V and $T X$ are polystable holomorphic bundles

$$
F_{(0,2)}=0, \quad F \wedge \omega \wedge \omega=0
$$

H satisfies a Bianchi identity

$$
H=\mathrm{i}(\partial-\bar{\partial}) \omega, \quad \mathrm{d} H=\frac{\alpha^{\prime}}{4}(\operatorname{tr} F \wedge F-\operatorname{tr} R \wedge R)
$$

Moduli

Difficult to find solutions! [Goldstein, Prokushkin; Fu, Yau; Becker, Sethi;
Becker ${ }^{2}$ et al.; . .]

- Torsional geometries not well understood

What are the moduli of these solutions?

- Deformations of X and V that preserve SUSY
- Hermitian, complex structure and bundle moduli
- No systematic understanding until recently [Anderson, Gray, Sharp '14; Garcia-Fernandez '13; Baraglia, Hekmati '13; de la Ossa, Svanes '14]

A holomorphic structure

Hull-Strominger system defines a holomorphic structure \bar{D} on a bundle \mathcal{Q}

A holomorphic structure

Hull-Strominger system defines a holomorphic structure \bar{D} on a bundle \mathcal{Q}

- Define $\mathcal{Q} \simeq T^{(1,0)} X \oplus$ End $V \oplus$ End $T X \oplus T^{*(1,0)}(X)$

A holomorphic structure

Hull-Strominger system defines a holomorphic structure \bar{D} on a bundle \mathcal{Q}

- Define $\mathcal{Q} \simeq T^{(1,0)} X \oplus$ End $V \oplus$ End $T X \oplus T^{*(1,0)}(X)$
- Define a differential \bar{D} so that $\bar{D}^{2}=0$ iff $\bar{\partial}^{2}=\bar{\partial}_{A}^{2}=0$ and Bianchi for F and H

A holomorphic structure

Hull-Strominger system defines a holomorphic structure \bar{D} on a bundle \mathcal{Q}

- Define $\mathcal{Q} \simeq T^{(1,0)} X \oplus$ End $V \oplus$ End $T X \oplus T^{*(1,0)}(X)$
- Define a differential \bar{D} so that $\bar{D}^{2}=0$ iff $\bar{\partial}^{2}=\bar{\partial}_{A}^{2}=0$ and Bianchi for F and H

$$
\begin{gathered}
\left(\bar{D}^{2}=0\right)+\text { polystability }+ \text { conformally balanced } \\
\hat{\Perp} \\
(X, V) \text { gives } \stackrel{\mathcal{N}}{ }=1 \text { solution }
\end{gathered}
$$

[Anderson, Gray, Sharp '14; de la Ossa, Svanes '14]

Moduli

$\mathrm{H}_{\bar{D}}^{(0,1)}(\mathcal{Q})$ gives the infinitesimal deformations

- Gives infinitesimal massless spectrum
- These deformations can be obstructed at higher orders

Moduli

$\mathrm{H}_{\bar{D}}^{(0,1)}(\mathcal{Q})$ gives the infinitesimal deformations

- Gives infinitesimal massless spectrum
- These deformations can be obstructed at higher orders

In the low-energy theory, the infinitesimal calculation tells you these moduli appear in the action without mass terms

The obstructions at higher orders correspond to Yukawa couplings

- We want to understand these higher-order contributions

Moduli

$\mathrm{H}_{\bar{D}}^{(0,1)}(\mathcal{Q})$ gives the infinitesimal deformations

- Gives infinitesimal massless spectrum
- These deformations can be obstructed at higher orders

In the low-energy theory, the infinitesimal calculation tells you these moduli appear in the action without mass terms

The obstructions at higher orders correspond to Yukawa couplings

- We want to understand these higher-order contributions

Analogous to complex structure defs

- Infinitesimally: $\bar{\partial} \mu=0$
- Higher order: $\bar{\partial} \mu-\frac{1}{2}[\mu, \mu]=0$

Higher-order deformations

Higher-order deformations are difficult

- Complicated and highly dependent on how you parametrise the deformations

Higher-order deformations

Higher-order deformations are difficult

- Complicated and highly dependent on how you parametrise the deformations

Physics guides us

- $\mathcal{N}=1$ theory $\Rightarrow 4 d$ superpotential is holomorphic [McOrist '16]
- Field space is complex with Kähler metric [Candelas et al. '15]
- Superpotential sees only holomorphic deformations

The heterotic superpotential

4d heterotic theory has a GVW-like superpotential [Gukov et al. '99;
Becker et al. '03; Cardoso et al. '03, Lukas et al. '05; McOrist '16]

$$
W=\int_{X}(H+\mathrm{id} \omega) \wedge \Omega
$$

The heterotic superpotential

4d heterotic theory has a GVW-like superpotential [Gukov et al. '99;
Becker et al. '03; Cardoso et al. '03, Lukas et al. '05; McOrist '16]

$$
W=\int_{X}(H+\mathrm{id} \omega) \wedge \Omega
$$

Minkowski vacuum $\Leftrightarrow W=\delta W=0$ on solution

- Recover F-term conditions
- D-term conditions are polystability and conformal balance not relevant for moduli
[de la Ossa, Hardy, Svanes '14]
(Suppress TX for now)

Change of superpotential

Holomorphic deformations are

$$
\begin{aligned}
\Delta \Omega & =\imath_{\mu} \Omega+\frac{1}{2} \imath_{\mu} \imath_{\mu} \Omega+\frac{1}{3!} \imath_{\mu} \imath_{\mu} \imath_{\mu} \Omega, \\
\Delta(B+\mathrm{i} \omega) & =x_{(1,1)}+b_{(0,2)} \\
\Delta A & =\alpha_{(0,1)}
\end{aligned}
$$

Change of superpotential

Holomorphic deformations are

$$
\begin{aligned}
\Delta \Omega & =\imath_{\mu} \Omega+\frac{1}{2} \imath_{\mu} \imath_{\mu} \Omega+\frac{1}{3!} \imath_{\mu} \imath_{\mu} \imath_{\mu} \Omega, \\
\Delta(B+\mathrm{i} \omega) & =x_{(1,1)}+b_{(0,2)} \\
\Delta A & =\alpha_{(0,1)}
\end{aligned}
$$

Generic holomorphic deformation gives

$$
\begin{aligned}
\Delta W= & 2 \int_{X}\left(-\imath_{\mu} \bar{\partial} x+\frac{1}{2} \mathrm{i} \imath_{\mu} \imath_{\mu} \partial \omega+\ldots-\frac{1}{2} \imath_{\mu} \partial b\right) \wedge \Omega \\
& +\int_{X} \operatorname{tr}\left(\alpha \wedge \bar{\partial}_{A} \alpha-2 \imath_{\mu} F \wedge \alpha+\frac{2}{3} \alpha \wedge \alpha \wedge \alpha+\ldots\right) \wedge \Omega
\end{aligned}
$$

Change of superpotential

Holomorphic deformations are

$$
\begin{aligned}
\Delta \Omega & =\imath_{\mu} \Omega+\frac{1}{2} \imath_{\mu} \imath_{\mu} \Omega+\frac{1}{3!} \imath_{\mu} \imath_{\mu} \imath_{\mu} \Omega, \\
\Delta(B+\mathrm{i} \omega) & =x_{(1,1)}+b_{(0,2)} \\
\Delta A & =\alpha_{(0,1)}
\end{aligned}
$$

Generic holomorphic deformation gives

$$
\begin{aligned}
\Delta W= & 2 \int_{X}\left(-\imath_{\mu} \bar{\partial} x+\frac{1}{2} \mathrm{i} \imath_{\mu} \imath_{\mu} \partial \omega+\ldots-\frac{1}{2} \imath_{\mu} \partial b\right) \wedge \Omega \\
& +\int_{X} \operatorname{tr}\left(\alpha \wedge \bar{\partial}_{A} \alpha-2 \imath_{\mu} F \wedge \alpha+\frac{2}{3} \alpha \wedge \alpha \wedge \alpha+\ldots\right) \wedge \Omega
\end{aligned}
$$

Now want $\Delta W=\delta \Delta W=0$ for $\mathcal{N}=1$ Minkowski vacuum

- Is there some structure hiding here?

\bar{D} and brackets

Looking for a Maurer-Cartan equation - need a differential and a bracket

Package deformation as

$$
\begin{aligned}
& y=(x, \alpha, \mu) \\
& y \in \Omega^{(0,1)}(\mathcal{Q}) \simeq \Omega^{(0,1)}\left(T^{*(1,0)} X \oplus \operatorname{End} V \oplus T^{(1,0)} X\right)
\end{aligned}
$$

\bar{D} and brackets

Looking for a Maurer-Cartan equation - need a differential and a bracket

Package deformation as

$$
\begin{aligned}
& y=(x, \alpha, \mu) \\
& y \in \Omega^{(0,1)}(\mathcal{Q}) \simeq \Omega^{(0,1)}\left(T^{*(1,0)} X \oplus \operatorname{End} V \oplus T^{(1,0)} X\right)
\end{aligned}
$$

Already have a candidate for the differential: \bar{D}

$$
\begin{aligned}
& (\bar{D} y)_{a}=\bar{\partial} x_{a}+\mathrm{i}(\partial \omega)_{e a \bar{c}} \mathrm{~d} \bar{z}^{\bar{c}} \wedge \mu^{e}-\operatorname{tr}\left(F_{a \bar{b}} \mathrm{~d} \bar{z}^{\bar{b}} \wedge \alpha\right) \\
& (\bar{D} y)_{\alpha}=\bar{\partial}_{A} \alpha+F_{b \bar{c}} \mathrm{~d} \overline{\mathrm{z}}^{\bar{c}} \wedge \mu^{b} \\
& (\bar{D} y)^{a}=\bar{\partial} \mu^{a}
\end{aligned}
$$

[Anderson-Gray-Sharp '14; de la Ossa-Svanes '14]

\bar{D} and brackets

Appearance of $T X \oplus T^{*} X$ in \mathcal{Q} suggests form of bracket

$$
\begin{aligned}
{[y, y]_{a} } & =2 \mu^{b} \wedge \partial_{b} x_{a}-\mu^{b} \wedge \partial_{a} x_{b}+\ldots \\
{[y, y]_{\alpha} } & =-2 \alpha \wedge \alpha+\ldots \\
{[y, y]^{a} } & =2 \mu^{b} \wedge \partial_{b} \mu^{a}
\end{aligned}
$$

Also have a natural pairing on sections

$$
\langle y, y\rangle=2 \mu^{a} \wedge x_{a}+\operatorname{tr} \alpha \wedge \alpha
$$

\bar{D} and $[\cdot, \cdot]$ satisfy Leibniz identity, and bracket satisfies Jacobi identity up to ∂-exact terms

Superpotential

Change in superpotential can be written as

$$
\Delta W=\int\left\langle y, \bar{D} y-\frac{1}{3}[y, y]-\partial b\right\rangle \wedge \Omega
$$

Superpotential

Change in superpotential can be written as

$$
\Delta W=\int\left\langle y, \bar{D} y-\frac{1}{3}[y, y]-\partial b\right\rangle \wedge \Omega
$$

$\mathcal{N}=1$ Minkowski $\Leftrightarrow W=\delta W=0$ gives

$$
\begin{aligned}
\bar{D} y-\frac{1}{2}[y, y]-\frac{1}{2} \partial b & =0, \\
\bar{\partial} b-\frac{1}{2}\langle y, \partial b\rangle+\frac{1}{3!}\langle y,[y, y]\rangle & =0, \\
\partial \imath_{y} \Omega & =0
\end{aligned}
$$

Solutions (y, b) are moduli

Superpotential

Change in superpotential can be written as

$$
\Delta W=\int\left\langle y, \bar{D} y-\frac{1}{3}[y, y]-\partial b\right\rangle \wedge \Omega
$$

$\mathcal{N}=1$ Minkowski $\Leftrightarrow W=\delta W=0$ gives

$$
\begin{aligned}
\bar{D} y-\frac{1}{2}[y, y]-\frac{1}{2} \partial b & =0, \\
\bar{\partial} b-\frac{1}{2}\langle y, \partial b\rangle+\frac{1}{3!}\langle y,[y, y]\rangle & =0, \\
\partial \imath_{y} \Omega & =0
\end{aligned}
$$

Solutions (y, b) are moduli

- Generalisation of holomorphic Chern-Simons theory
- Can recast as an L_{3} algebra

Summary and outlook

Summary

- Coupled moduli of the Hull-Strominger system via superpotential
- Superpotential reduces to Chern-Simons like form

Summary and outlook

Summary

- Coupled moduli of the Hull-Strominger system via superpotential
- Superpotential reduces to Chern-Simons like form

Still to do

- Specific examples? Can we compute the cohomologies?
- Are there conditions for moduli to be unobstructed?
- Quantum corrections?
- Topological theory? [Witten '91]
- New invariants? [Donaldson, Thomas '98]

